Skip to main content

Ensemble based Reservoir Tool (ERT)

Project description

ert

Build Status PyPI - Python Version Code Style Type checking codecov License: GPL v3

ERT - Ensemble based Reservoir Tool - is designed for running ensembles of dynamical models such as reservoir models, in order to do sensitivity analysis and data assimilation. ERT supports data assimilation using the Ensemble Smoother (ES), Ensemble Smoother with Multiple Data Assimilation (ES-MDA) and Iterative Ensemble Smoother (IES).

Prerequisites

Python 3.8+ with development headers.

Installation

$ pip install ert
$ ert --help

or, for the latest development version:

$ pip install git+https://github.com/equinor/ert.git@main
$ ert --help

The ert program is based on two different repositories:

  1. ecl which contains utilities to read and write Eclipse files.

  2. ert - this repository - the actual application and all of the GUI.

ERT is now Python 3 only. The last Python 2 compatible release is 2.14

Installing on Macs with ARM CPUs

A few of ERT's dependencies aren't compiled for ARM CPUs. Because of this, we need to do some Rosetta "hot swapping".

First, install Rosetta by running softwareupdate --install-rosetta [--agree-to-license]

Once Rosetta is installed, you can switch to an Intel based architecture by running: arch -x86_64 <SHELL_PATH>. Note that if your shell is installed as an ARM executable, this will error. If that's the case, you can simply pass /bin/zsh as the shell path.

Now you're set to install Homebrew for Intel architectures:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Now, to be able to hot swap between Intel and ARM architectures, add the following to your shell profile config:

alias arm="env /usr/bin/arch -arm64 <SHELL_PATH> --login"
alias intel="env /usr/bin/arch -x86_64 <SHELL_PATH> --login"

local cpu=$(uname -m)

if [[ $cpu == "arm64" ]]; then
	eval "$(/opt/homebrew/bin/brew shellenv)"
fi

if [[ $cpu == "x86_64" ]]; then
	eval "$(/usr/local/homebrew/bin/brew shellenv)"
fi

Note: You can always check which architecture you're running by calling either arch or uname -m.

This will allow you to switch between architectures by calling either intel or arm from your terminal. Switching architectures will automatically source the correct Hombrew executable for your architecture as well, which is key.

Now, simply switch to Intel, and install Python and set up a virtualenv as instructed below.

Documentation

Documentation for ert is located at https://ert.readthedocs.io/en/latest/.

Developing

ERT was originally written in C/C++ but most new code is Python.

Developing Python

You might first want to make sure that some system level packages are installed before attempting setup:

- pip
- python include headers
- (python) venv
- (python) setuptools
- (python) wheel

It is left as an exercise to the reader to figure out how to install these on their respective system.

To start developing the Python code, we suggest installing ERT in editable mode into a virtual environment to isolate the install (substitute the appropriate way of sourcing venv for your shell):

# Create and enable a virtualenv
python3 -m venv my_virtualenv
source my_virtualenv/bin/activate

# Update build dependencies
pip install --upgrade pip wheel setuptools

# Download and install ERT
git clone https://github.com/equinor/ert
cd ert
pip install --editable .

Test setup

Additional development packages must be installed to run the test suite:

pip install "ert[dev]" 
pytest tests/

Git LFS must be installed to get all the files. This is packaged as git-lfs on Ubuntu, Fedora or macOS Homebrew. For Equinor RGS node users, it is possible to use git from Red Hat Software Collections:

source /opt/rh/rh-git227/enable

test-data/block_storage is a submodule and must be checked out.

git submodule update --init --recursive

If you checked out submodules without having git lfs installed, you can force git lfs to run in all submodules with:

git submodule foreach "git lfs pull"

Trouble with setup

If you encounter problems during install, try deleting the _skbuild folder before reinstalling.

As a simple test of your ert installation, you may try to run one of the examples, for instance:

cd test-data/poly_example
# for non-gui trial run
ert test_run poly.ert
# for gui trial run
ert gui poly.ert

Note that in order to parse floating point numbers from text files correctly, your locale must be set such that . is the decimal separator, e.g. by setting

# export LC_NUMERIC=en_US.UTF-8

in bash (or an equivalent way of setting that environment variable for your shell).

Developing C++

C++ is the backbone of ERT as in used extensively in important parts of ERT. There's a combination of legacy code and newer refactored code. The end goal is likely that some core performance-critical functionality will be implemented in C++ and the rest of the business logic will be implemented in Python.

While running --editable will create the necessary Python extension module (src/ert/_clib.cpython-*.so), changing C++ code will not take effect even when reloading ERT. This requires recompilation, which means reinstalling ERT from scratch.

To avoid recompiling already-compiled source files, we provide the script/build script. From a fresh virtualenv:

git clone https://github.com/equinor/ert
cd ert
script/build

This command will update pip if necessary, install the build dependencies, compile ERT and install in editable mode, and finally install the runtime requirements. Further invocations will only build the necessary source files. To do a full rebuild, delete the _skbuild directory.

Note: This will create a debug build, which is faster to compile and comes with debugging functionality enabled. This means that, for example, Eigen computations will be checked and will abort if preconditions aren't met (eg. when inverting a matrix, it will explicitly check that the matrix is square). The downside is that this makes the code unoptimised and slow. Debugging flags are therefore not present in builds of ERT that we release on Komodo or PyPI. To build a release build for development, use script/build --release.

Notes

  1. If pip reinstallation fails during the compilation step, try removing the _skbuild directory.

  2. The default maximum number of open files is normally relatively low on MacOS and some Linux distributions. This is likely to make tests crash with mysterious error-messages. You can inspect the current limits in your shell by issuing the command ulimit -a. In order to increase maximum number of open files, run ulimit -n 16384 (or some other large number) and put the command in your .profile to make it persist.

Running C++ tests

The C++ code and tests require libecl. As long as you have pip install ecl'd into your Python virtualenv all should work.

# Create and enable a virtualenv
python3 -m venv my_virtualenv
source my_virtualenv/bin/activate

# Install build dependencies
pip install pybind11 conan cmake ecl

# Build ERT and tests
mkdir build && cd build
cmake ../src/clib -DCMAKE_BUILD_TYPE=Debug
make -j$(nproc)

# Run tests
ctest --output-on-failure

Compiling protocol buffers

Use the following command to (re)compile protocol buffers manually:

python setup.py compile_protocol_buffers

Example usage

Basic ERT test

To test if ERT itself is working, go to test-data/poly_example and start ERT by running poly.ert with ert gui

cd test-data/poly_example
ert gui poly.ert

This opens up the ERT graphical user interface. Finally, test ERT by starting and successfully running the simulation.

ERT with a reservoir simulator

To actually get ERT to work at your site you need to configure details about your system; at the very least this means you must configure where your reservoir simulator is installed. In addition you might want to configure e.g. queue system in the site-config file, but that is not strictly necessary for a basic test.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ert-7.0.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ert-7.0.0b1-cp311-cp311-macosx_10_15_x86_64.whl (907.4 kB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ert-7.0.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ert-7.0.0b1-cp310-cp310-macosx_10_15_x86_64.whl (904.7 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ert-7.0.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ert-7.0.0b1-cp39-cp39-macosx_10_15_x86_64.whl (904.9 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

ert-7.0.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ert-7.0.0b1-cp38-cp38-macosx_10_15_x86_64.whl (904.7 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file ert-7.0.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ert-7.0.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b4818e08842ed21628833bf76534d2356f7bf781d28ec1d08b931d8b17cf638
MD5 05038d5fd989ade7e088c74148635bd8
BLAKE2b-256 4472b7d8ebde2f410cc02ea072407b1a681603fbeed86a0eb658660a10a67a5e

See more details on using hashes here.

File details

Details for the file ert-7.0.0b1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ert-7.0.0b1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3675add98a4a39ab2323087f01bf8895e9f61d4e5e44e25a568ba7791c69fe64
MD5 de734a02959fd18a25c55452f21d7a26
BLAKE2b-256 b5d13b21a02ad11b07a20411e41dc5c9cf93b4f94a9fb193eb4bff52707d83f8

See more details on using hashes here.

File details

Details for the file ert-7.0.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ert-7.0.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6ba2b4f9dfe1bded5b4668a1a628d082c487be7132e553c7f0ae75b3bbf65c0
MD5 90ec1fa8893a9f670e25262b1899a027
BLAKE2b-256 14d9d2540f0d0272fb438b9e5a1baa311ba7c45b9c12535c713a47dde8ce0f3b

See more details on using hashes here.

File details

Details for the file ert-7.0.0b1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ert-7.0.0b1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6f3d96cf4212cf1c7989b2256aa7a7d8d1d5a3c0d3ba168031f74eaeb5c6a818
MD5 b4a61ac76a123f1c62adc27fad152683
BLAKE2b-256 a581319e17e73548773b29acf433f8456017ff77224a00fac10e55c2cc987f0c

See more details on using hashes here.

File details

Details for the file ert-7.0.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ert-7.0.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 824cb25b8c6d35545d2c01001a71d9c56f0d48bff1e51872421afa6104cf4aff
MD5 a7ff64def25a4304e852b180b8a0fc37
BLAKE2b-256 69ec56b5f677b6fe58c078af4eddaeab83f520908a8b3a74fa79a3f036fabfe3

See more details on using hashes here.

File details

Details for the file ert-7.0.0b1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ert-7.0.0b1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7a113248512a873b940ce822579ce32321f845e0bf8e70c56ed3f3fc312a7c60
MD5 497da0c322c03a39b47bebb82b2981a7
BLAKE2b-256 28cd70cc84a8d1de959e5676aa5a293f54c263f349b767a80c7c2b030f2d21d1

See more details on using hashes here.

File details

Details for the file ert-7.0.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ert-7.0.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa17021a3df6c06af789b2d42d1f7229bbf3448f318b4e6025efad4f33a02d0d
MD5 23a1137bb7134c4cd1968c68197afe5f
BLAKE2b-256 685f236efe51a1b8e17ba7aee4591c28846d0e05e2c835484551509559a653e8

See more details on using hashes here.

File details

Details for the file ert-7.0.0b1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ert-7.0.0b1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f766347aeb52e821ba8328cbb168c67c72161332518ab13f26e52a2bd70f3ab1
MD5 ebf2c1634050b7e6d259d2930805d8e0
BLAKE2b-256 a816aae213d157bb42dba189c6b637650d50c120c7619fcb315479d52ee21ffb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page