Skip to main content

Read, write and update large scale pandas DataFrame with ElasticSearch

Project description

es_pandas

Build Status 996.icu LICENSE PyPi version Downloads

Read, write and update large scale pandas DataFrame with ElasticSearch.

Requirements

This package should work on Python3(>=3.4) and ElasticSearch should be version 5.x, 6.x or 7.x.

Installation The package is hosted on PyPi and can be installed with pip:

pip install es_pandas

Deprecation Notice

Supporting of ElasticSearch 5.x will by deprecated in future version.

Usage

import time

import pandas as pd

from es_pandas import es_pandas


# Information of es cluseter
es_host = 'localhost:9200'
index = 'demo'

# crete es_pandas instance
ep = es_pandas(es_host)

# Example data frame
df = pd.DataFrame({'Num': [x for x in range(100000)]})
df['Alpha'] = 'Hello'
df['Date'] = pd.datetime.now()

# init template if you want
doc_type = 'demo'
ep.init_es_tmpl(df, doc_type)

# Example of write data to es, use the template you create
ep.to_es(df, index, doc_type=doc_type, thread_count=2, chunk_size=10000)

# set use_index=True if you want to use DataFrame index as records' _id
ep.to_es(df, index, doc_type=doc_type, use_index=True, thread_count=2, chunk_size=10000)

# delete records from es
ep.to_es(df.iloc[5000:], index, doc_type=doc_type, _op_type='delete', thread_count=2, chunk_size=10000)

# Update doc by doc _id
df.iloc[:1000, 1] = 'Bye'
df.iloc[:1000, 2] = pd.datetime.now()
ep.to_es(df.iloc[:1000, 1:], index, doc_type=doc_type, _op_type='update')

# Example of read data from es
df = ep.to_pandas(index)
print(df.head())

# return certain fields in es
heads = ['Num', 'Date']
df = ep.to_pandas(index, heads=heads)
print(df.head())

# set certain columns dtype
dtype = {'Num': 'float', 'Alpha': object}
df = ep.to_pandas(index, dtype=dtype)
print(df.dtypes)

# infer dtype from es template
df = ep.to_pandas(index, infer_dtype=True)
print(df.dtypes)

# use query_sql parameter if you want to do query in sql

# Example of write data to es with pandas.io.json
ep.to_es(df, index, doc_type=doc_type, use_pandas_json=True, thread_count=2, chunk_size=10000)
print('write es doc with pandas.io.json finished')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for es-pandas, version 0.0.21
Filename, size File type Python version Upload date Hashes
Filename, size es_pandas-0.0.21-py3-none-any.whl (6.5 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size es_pandas-0.0.21.tar.gz (5.2 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page