Skip to main content

This package provides "rough path" tools for analysing vector time series.

Project description

esig

The Python package esig provides a toolset (previously called sigtools) for transforming vector time series in stream space to signatures in effect space. It is based on the libalgebra C++ library.

build

Installation

esig can be installed from a wheel using pip in most cases. The wheels contain all of the dependencies and thus make it easy to use the package. For example, on Python 3.8, you can install esig using the following console command:

python3.8 -m pip install esig

(You may need to tweak this command based on your platform, Python version, and preferences.)

esig can be compiled from source, but this is not advised. More information can be found in the documentation.

Basic usage

esig provides a collection of basic functions for computing the signature of a data stream in the form of a Numpy array. The stream2sig function computes the signature of a data stream up to a specific depth. For example, we can create a very simple data stream and compute its signature as follows.

import numpy as np
import esig

stream = np.array([
    [1.0, 1.0],
    [3.0, 4.0],
    [5.0, 2.0],
    [8.0, 6.0]
])
depth = 2

sig = esig.stream2sig(stream, depth) # compute the signature
print(sig) # prints "[1.0, 7.0, 5.0, 24.5, 19.0, 16.0, 12.5]"

The signature is returned as a flat Numpy array that contains the terms of the signature - which is fundamentally a higher dimensional tensor - in degree order. This first element is always 1.0, which corresponds to the empty tensor key. In this case the dimension is 2 (specified by the number of columns in the stream array), and so the next two elements are the signature elements corresponding to the words (1) and (2). These are the depth 1 words. The final 4 elements are the depth 2 words (1,1), (1,2), (2,1), and (2,2). esig provides the sigkeys function to generate these labels for you based on the parameters of the data.

width = 2
sig_keys = esig.sigkeys(width, depth)
print(sig_keys) # prints " () (1) (2) (1,1) (1,2) (2,1) (2,2)"

To compute the log signature of a data stream you use the stream2logsig function. This works in a similar manner to the stream2sig function in that it takes a Numpy array (the data) and a depth and returns a flat Numpy array containing the elements of the log signature in degree order.

log_sig = esig.stream2logsig(stream, depth)
print(log_sig) # prints "[7.  5.  1.5]"

Here the first two elements are the depth 1 Lie elements (corresponding to the letters 1 and 2) and the third element is the coefficient of the Hall basis element [1,2]. Again, esig provides a utility function logsigkeys for getting the keys that correspond to the coefficients in order for the log signature.

log_sig_keys = esig.logsigkeys(width, depth)
print(log_sig_keys) # prints " 1 2 [1,2]"

There are two additional utility functions for computing the size of a signature or logsignature with a specified dimension and depth: sigdim and logsigdim. These functions return an integer that is the dimension of the Numpy array returned from the stream2sig or stream2logsig functions, respectively.

esig also provides another function recombine, which performs a reduction of a measure defined on a large ensemble in a way so that the resulting measure has the same total mass, but is supported on a (relatively) small subset of the original ensemble. In particuar, the expected value over the ensemble with respect to the new measure agrees with that of the original measure.

Using alternative computation backends

esig uses libalgebra as a backend for computing signatures and log signatures by default. However, the computation backend can be changed to instead use an alternative library for computing signatures and log signatures. This is achieved by using the set_backend function in esig and providing the name of the backed that you wish to use. For example, we can switch to using the iisignature package as a backend by first installing the iisignature package and then using the command

import esig
esig.set_backend("iisignature")

To make it easier to install and use iisignature as a backend, it is offered as an optional extra when installing esig:

python3.8 -m pip install esig[iisignature]

You can also define your own backend for performing calculations by creating a class derived from esig.backends.BackendBase, implementing the methods describe_path (log_signature) and signature and related methods. 0.9.8.1 Hotfix - Fixed problem caused by reading data in from F-contiugous array - Fixed issue with readme on PyPI.

0.9.8 - Added support for Python3.10. - Updated build system to use cibuildwheel in Github actions. - Updated libalgebra to benefit from improvements to performance - Deprecated tosig submodule. The functions formerly from this module are available via the top-level esig module. The tosig module will be removed in version 1.0. - Removed builds on 32-bit Linux for Python 3.8+. There is no Numpy wheels on this architecture for these versions of Python.

0.9.0 - Switched Linux support to manylinux2010 - Support for 32-bit platforms

0.8.2 - Added builds for Python3.9 - Updated README

0.8.1 - Minor fixes to build routine

0.8.0 - Added Python interface in the package root to computation backends - Added iisignature backend to allow computation of signatures using the iisignature package - Added support for computing depth 1 signatures and logsignatures - Added new unit tests. - Made some changes to the build script - Added Python 3.9 build target

0.7.4 - Fixed message displayed for Python versions below 3.8 when importing esig

0.7.3 - Added recombine function

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

esig-0.9.8.1.tar.gz (203.0 kB view details)

Uploaded Source

Built Distributions

esig-0.9.8.1-cp310-cp310-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

esig-0.9.8.1-cp310-cp310-win32.whl (2.5 MB view details)

Uploaded CPython 3.10 Windows x86

esig-0.9.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

esig-0.9.8.1-cp310-cp310-macosx_10_11_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 10.11+ x86-64

esig-0.9.8.1-cp39-cp39-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

esig-0.9.8.1-cp39-cp39-win32.whl (2.5 MB view details)

Uploaded CPython 3.9 Windows x86

esig-0.9.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

esig-0.9.8.1-cp39-cp39-macosx_10_11_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 macOS 10.11+ x86-64

esig-0.9.8.1-cp38-cp38-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

esig-0.9.8.1-cp38-cp38-win32.whl (2.5 MB view details)

Uploaded CPython 3.8 Windows x86

esig-0.9.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

esig-0.9.8.1-cp38-cp38-macosx_10_11_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8 macOS 10.11+ x86-64

esig-0.9.8.1-cp37-cp37m-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

esig-0.9.8.1-cp37-cp37m-win32.whl (2.5 MB view details)

Uploaded CPython 3.7m Windows x86

esig-0.9.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

esig-0.9.8.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

esig-0.9.8.1-cp37-cp37m-macosx_10_11_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.7m macOS 10.11+ x86-64

esig-0.9.8.1-cp36-cp36m-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

esig-0.9.8.1-cp36-cp36m-win32.whl (2.5 MB view details)

Uploaded CPython 3.6m Windows x86

esig-0.9.8.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

esig-0.9.8.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (3.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

esig-0.9.8.1-cp36-cp36m-macosx_10_11_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

File details

Details for the file esig-0.9.8.1.tar.gz.

File metadata

  • Download URL: esig-0.9.8.1.tar.gz
  • Upload date:
  • Size: 203.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1.tar.gz
Algorithm Hash digest
SHA256 6352288ee3de21ea312331100f92b67eee25719f455c3b660e6bebae1beade3b
MD5 7baf77c64d8048da9948b78ad1187d2b
BLAKE2b-256 f5d278429973cd5e21f24f2a87935c411c0b2a74a546913e898a68b205079a3c

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 45ae98a850fa156d97c264632d3fd46acdb46bd3a99a93213e592d7f2077d1b4
MD5 5fd0139d6612402d9f1c27abda735ace
BLAKE2b-256 964af7cb45c8fa72f85ea1bc967b91a3694aa63e62fd7536a0e1894801098802

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 30bb415050d9e59e43db9f0394739bb67046f6b3650c787d301beb6158080f19
MD5 88a8fa685c1e5267171acc4ef3d1737e
BLAKE2b-256 b5f921536ad2b07941f40508ee962a7090bf327abe8de40aad22b5f907ed8bed

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d46af211e7d9f2725765d46b41961539f5acdec9538044799fbcfb0a14da13a1
MD5 e0540c3fdc2cb5cf5b58745250d9ddce
BLAKE2b-256 cd2924c0a263d4089ba8d8347b4226f38e2bbe02704c5a5508d20e888bc79ca7

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp310-cp310-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp310-cp310-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 119d360c9dcf8c2c6e32b459bf84746e3250162a9a90754adc26f045ef2d323e
MD5 b2cceb2db6cbebb206a91fae0c0d53c7
BLAKE2b-256 797991664c9d65cbb48043a25b470d667a8ce0cb5ec3db3fa02630ea8c2a1b3a

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f3dd4eb6f6edb49d591f3fa18192b4af44afe8d520fbdd53ded99d56dc19be70
MD5 8363f63537913d632c52d65e35531515
BLAKE2b-256 0620eec17d2fffc06fd3d0efce305399990dd3e136ef25a1f935bdf4640a2595

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9e0ffbfc74a96f115fc0ad4c9485f8ebf77f3aa59cbd6e2a00fde3b322ae8f41
MD5 ad4e6eedd82b0b33520191d0fe5b14c3
BLAKE2b-256 cdb01029c47e5ff6a726af4adca11d73cb324aa0ad524d66debfde4f054f0e75

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3474c442945353cde25bc032e0613772dc5d5fd8c2b9bfd45e8877a243d21843
MD5 cc6a0d61c6dee2e40328cecb63818bd2
BLAKE2b-256 fa61a856949e5137d8f372780a27dd57e225c35f15ad05086c9c2fd47f571452

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp39-cp39-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp39-cp39-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 32aef7b31922bd6db940ed1ac6d854b02720f38e9289feea316e6263532de18f
MD5 0e91d975203db861938a7bb00e3e7c4f
BLAKE2b-256 86009ff87cf902f730b4588cd6537e3ae351b2249ca71ef16a4f164fa03b84b3

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6550580a38dbd49ff327d089a3200886564ec38dbe1a5ccae050973a5f7ae3c4
MD5 21ea9f0aca4aa9a1fae564097224c7e6
BLAKE2b-256 de002bd97aa976b9aad492ba7cef21d025f39e2f38c70fdb2abc9113d051ef4a

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b27c87a1464285ae142315e15f07fd2e73d93870bac43183c28dafd04eaf63ec
MD5 2daae74c7ca214ff9d4c60dc28029306
BLAKE2b-256 58fac8a3d68b20c6f053b81e27146c231ee57212bc73d3499de4c811870e2bd5

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60986d2585b89eca06aeab54339ee9aba406ee1ede2b047380d8dc40638d6b9b
MD5 70411922d3f99bdbcd2c971f57eed927
BLAKE2b-256 89652ff663926105accee6bbf4f8e1ed31938414f68a5ad82517816a46532e48

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp38-cp38-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp38-cp38-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 749023938f6e002bb6d467191325ce190e6de77c2211e1c07967ddc301c2f7c4
MD5 27bbe2cda02591f909112f3eff6eb36f
BLAKE2b-256 3f7bdede86872d619bd843bcdada1b6476fc4cbd61948739a003e12aa39f5e7e

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 65b203a0a00831871b9f23e4205e051fe769b13d4fa0bfde4c57a9e12c5f0b56
MD5 5bd390bbe36b5e2d0d947f3ce8ddfb84
BLAKE2b-256 c972cbadafed165221163055aaa0cefb0c6450043d21dff27fce64d7c1ea27f6

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 abe94886cfca0ce79f28228701604818e2d762d56890b9b58553fdf72e3cb676
MD5 d30ea8b13ed2273f6caa31cac2f16a6a
BLAKE2b-256 581d58945f8eed5946c9c8f7e633a90cdd43b9f84537f58e267c6f5e0d759a0e

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9530b57179885b68cccccfe2c0dcae4f48051e2bfd0ccc42d1e8a1605d72d6e
MD5 aed19281f2f1491b71df3461cf757af7
BLAKE2b-256 0f9f76136706ad2cb8e1184971837063b8185c2ae7f87a0f7f561b7d828118b3

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 75f951923a12e6549724d76bfd58b3359b63b8b735b2f0cfe509da3c8934b270
MD5 66c8f786d8c73e9fe38038ac2196447d
BLAKE2b-256 043df9f38dc5e6c27dd1a2c37d97c23580f993601e69077b8822c8072d2fef90

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp37-cp37m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp37-cp37m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 06e8c5cdfb5b6627c326247a4e5c7aefe0a0feceab0a0aeee8eab9dc4ad803f9
MD5 580c21a2526efea05bcf987f00c005a0
BLAKE2b-256 80daa88857f8580683cb23664e559975e715db58b9b8a5f1399692893bff7268

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6e2e88a0b8d7c347ea53a31ac9473a31e6c425a6826f4dec3ef8ad69e1dec3a2
MD5 18f8297f112b7540b9f26628525f5cfd
BLAKE2b-256 cb69d195652a8b7e35ca60d56f9af1eaad90f5cda8c0a8cc6ec987dc8b6e146c

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: esig-0.9.8.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for esig-0.9.8.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 83eadeee64f182df7cf034c3c53dfbcc407cb64f481dd35a97aac99c4be99ec6
MD5 d7b7a9b5c49d36fbf70522104607f5d0
BLAKE2b-256 38e54a99800d8654201debf7b0bc72abd959e1a8173f0206648f697d55b889f5

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a75029cdbbeca7e340b95264d0946c0370c357b6c97887c384526bb94236293
MD5 1eb4d65c1b12027ca6bd03acf4e17f76
BLAKE2b-256 18ab21ae70616120518dbdbe9d421ffd67be1db27de34642390931871b3209be

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 278a561251f0c47ecac162a298534aa00501a876e85c0fb77acd2df629c107fd
MD5 fca34b38836a80dc63d8c158c64570d8
BLAKE2b-256 444bbdc14b7d2f19fe61240467e5a2e4b98decad82d7873689eeb69b0c674f06

See more details on using hashes here.

File details

Details for the file esig-0.9.8.1-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.1-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 df86fcc248d058a8b13853b4827c3e589cc88b2eadf02222111468991205763f
MD5 86eb6435281578cb271103dcff2c0974
BLAKE2b-256 cbb700b71eb78274bb43ba0aa582334cfeec3e7a8db86e06d4e7f2316a35147e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page