Skip to main content

Data driven report builder for the PyData ecosystem.

Project description





esparto is a Python library for building data driven reports with content from popular analytics packages.

Main Features

Basic Usage

import esparto as es

# Do some analysis
pandas_df = ...
plot_fig = ...
markdown_str = ...

# Create a page
page = es.Page(title="My Report")

# Add content
page["Data Analysis"]["Plot"] = plot_fig
page["Data Analysis"]["Data"] = pandas_df
page["Data Analysis"]["Notes"] = markdown_str

# Save to HTML or PDF
page.save_html("my-report.html")
page.save_pdf("my-report.pdf")

Installation

esparto is available from PyPI and Conda:

pip install esparto
conda install esparto -c conda-forge
poetry add esparto

Dependencies

Optional

License

MIT

Documentation

User guides, documentation, and examples are available on the project home page.

Contributions, Issues, and Requests

Feedback and contributions are welcome - please raise an issue or pull request on GitHub.

Examples

Iris Report - Webpage | PDF | Notebook


example page

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

esparto-4.3.1.tar.gz (49.0 kB view details)

Uploaded Source

Built Distribution

esparto-4.3.1-py3-none-any.whl (52.3 kB view details)

Uploaded Python 3

File details

Details for the file esparto-4.3.1.tar.gz.

File metadata

  • Download URL: esparto-4.3.1.tar.gz
  • Upload date:
  • Size: 49.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for esparto-4.3.1.tar.gz
Algorithm Hash digest
SHA256 ee5fff73319c75fb0ecaac2e2af14a137b93ab1a1d9d9613b8615e339b63f038
MD5 b9d433386500579e51cbadb880bcc7aa
BLAKE2b-256 da9562a3b25bfa8079977d457fb6f5c67ab2d7d47fb78e698f6cdf21e0fc6b61

See more details on using hashes here.

File details

Details for the file esparto-4.3.1-py3-none-any.whl.

File metadata

  • Download URL: esparto-4.3.1-py3-none-any.whl
  • Upload date:
  • Size: 52.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for esparto-4.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9b886ad092935717e08e222e9873e1971f06b1fe4943c54e1925eb77bf897309
MD5 d900ebf507d64e456681b5b02bfcb21b
BLAKE2b-256 3e5deb4570b5489c4767ea59c3a4a7c775f1fa2f0c4176fa35674298534985ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page