Skip to main content

ETF screening tool

Project description

ETFpy

codecov PyPI version Star this repo

ETFpy is a Python library that allows users to scrape data from etfdb.com, a website that provides comprehensive information on ETFs, including trading data, performance metrics, assets allocations end more.

Installation

Install with pip as a package pip

pip install etfpy

or

Clone repostiory

# clone repository
git clone https://github.com/JakubPluta/pyetf.git
# navigate to cloned project and create virtual environment
python -m venv env
# activate virtual environment
source env/Scripts/activate # or source env/bin/activate
# install poetry
pip install poetry
# install packages
poetry install

Usage

>>> from etfpy import ETF, load_etf, get_available_etfs_list

# returns list of available ETFs.
>>> etfs = get_available_etfs_list()
>>> etfs
>>> ['SPY', 'IVV', 'VOO', 'VTI', 'QQQ', 'VEA', 'VTV', 'IEFA', 'BND', 'AGG', 'VUG', 'IJH', ... ]

# load etf
>>> vwo = load_etf('VWO')
# or
>>> spy = ETF("SPY")

Get basic ETF information

>>> spy.info
{
'52 Week Hi': '$457.83',
'52 Week Lo': '$342.72',
'AUM': '$402,034.0 M',
'Asset Class': 'Equity',
'Asset Class Size': 'Large-Cap',
'Asset Class Style': 'Blend',
'Brand': 'https://etfdb.com/issuer/spdr/',
'Category': 'Size and Style',
'Category:': 'Large Cap Growth Equities',
'Change:': '$1.04 (-0.0%)',
'ETF Home Page': 'https://www.spdrs.com/product/fund.seam?ticker=SPY',
'Expense Ratio': '0.09%',
'Focus': 'Large Cap',
'Inception': 'Jan 22, 1993',
'Index Tracked': 'https://etfdb.com/index/sp-500-index/',
'Issuer': 'https://etfdb.com/issuer/state-street/',
'Last Updated:': 'Sep 30, 2023',
'Niche': 'Broad-based',
'P/E Ratio': {
    'ETF Database Category Average': '15.15',
    'FactSet Segment Average': '5.84',
    'SPY': '17.86'
 },
'Price:': '$427.48',
'Region (General)': 'North America',
'Region (Specific)': 'U.S.',
'Segment': 'Equity: U.S.  -  Large Cap',
'Shares': '938.3 M',
'Strategy': 'Vanilla',
'Structure': 'UIT',
'Symbol': 'SPY',
'Url': 'https://etfdb.com/etf/SPY',
'Weighting Scheme': 'Market Cap'
}

Get technical analysis metrics

>>> spy.technicals
{
'20 Day MA': '$50.45',
'60 Day MA': '$50.74',
'Average Spread ($)': '1.00',
'Average Spread (%)': '1.00',
'Lower Bollinger (10 Day)': '$48.64',
'Lower Bollinger (20 Day)': '$48.33',
'Lower Bollinger (30 Day)': '$48.81',
'MACD 100 Period': '-0.74',
'MACD 15 Period': '0.20',
'Maximum Premium Discount (%)': '0.82',
'Median Premium Discount (%)': '0.27',
'RSI 10 Day': '49',
'RSI 20 Day': '47',
'RSI 30 Day': '47',
'Resistance Level 1': 'n/a',
'Resistance Level 2': '$50.53',
'Stochastic Oscillator %D (1 Day)': '53.54',
'Stochastic Oscillator %D (5 Day)': '73.08',
'Stochastic Oscillator %K (1 Day)': '55.09',
'Stochastic Oscillator %K (5 Day)': '57.68',
'Support Level 1': 'n/a',
'Support Level 2': '$49.86',
'Tracking Difference Max Downside (%)': '-0.87',
'Tracking Difference Max Upside (%)': '0.16',
'Tracking Difference Median (%)': '-0.36',
'Ultimate Oscillator': '47',
'Upper Bollinger (10 Day)': '$50.47',
'Upper Bollinger (20 Day)': '$52.61',
'Upper Bollinger (30 Day)': '$52.50',
'Williams % Range 10 Day': '19.32',
'Williams % Range 20 Day': '59.31'
}

Get dividends metrics

>>> spy.dividends
>>> {
    'Annual Dividend Rate': {'ETF Database Category Average': '$ 0.95',
                      'FactSet Segment Average': '$ 0.63',
                      'SPY': '$ 6.51'},
    'Annual Dividend Yield': {'ETF Database Category Average': '1.37%',
                       'FactSet Segment Average': '1.41%',
                       'SPY': '1.52%'},
    'Dividend': {'ETF Database Category Average': '$ 0.33',
                        'FactSet Segment Average': '$ 0.16',
                        'SPY': '$ 1.58'},
    'Dividend Date': {'ETF Database Category Average': 'N/A',
                       'FactSet Segment Average': 'N/A',
                       'SPY': '2023-09-15'}
        }

Get performance metrics

>>> spy.performance
{
'1 Month Return': {'ETF Database Category Average': '-2.89%',
            'Factset Segment Average': '-2.07%',
            'SPY': '-3.11%'},
'1 Year Return': {'ETF Database Category Average': '19.00%',
           'Factset Segment Average': '10.82%',
           'SPY': '19.69%'},
'3 Month Return': {'ETF Database Category Average': '-2.10%',
            'Factset Segment Average': '-1.07%',
            'SPY': '-1.70%'},
'3 Year Return': {'ETF Database Category Average': '5.55%',
           'Factset Segment Average': '4.06%',
           'SPY': '10.18%'},
'5 Year Return': {'ETF Database Category Average': '5.33%',
           'Factset Segment Average': '2.06%',
           'SPY': '9.83%'},
'YTD Return': {'ETF Database Category Average': '14.37%',
        'Factset Segment Average': '6.70%',
        'SPY': '13.02%'}
}

Get volatility metrics

>>> spy.volatility
{
     '20 Day Volatility': '10.61%',
     '200 Day Volatility': '10.91%',
     '5 Day Volatility': '200.37%',
     '50 Day Volatility': '11.16%',
     'Beta': '1.0',
     'Standard Deviation': '26.89%'
}

Get holding statistics

>>> spy.holding_statistics
{
'% of Assets in Top 10': {'ETF Database Category Average': '42.67%',
                       'FactSet Segment Average': '59.61%',
                       'SPY': '39.52%'},
'% of Assets in Top 15': {'ETF Database Category Average': '51.39%',
                       'FactSet Segment Average': '64.18%',
                       'SPY': '49.25%'},
'% of Assets in Top 50': {'ETF Database Category Average': '80.70%',
                       'FactSet Segment Average': '80.85%',
                       'SPY': '83.04%'},
'Number of Holdings': {'ETF Database Category Average': '412',
                    'FactSet Segment Average': '174',
                    'SPY': '1000'}
}

Get holdings

>>> spy.holdings

[{'Holding': 'Apple Inc.',
  'Share': '7.19%',
  'Symbol': 'AAPL',
  'Url': 'https://etfdb.com/stock/AAPL/'},
 {'Holding': 'Microsoft Corporation',
  'Share': '6.51%',
  'Symbol': 'MSFT',
  'Url': 'https://etfdb.com/stock/MSFT/'},
 {'Holding': 'Amazon.com, Inc.',
  'Share': '3.33%',
  'Symbol': 'AMZN',
  'Url': 'https://etfdb.com/stock/AMZN/'},
 {'Holding': 'NVIDIA Corporation',
  'Share': '2.95%',
  'Symbol': 'NVDA',
  'Url': 'https://etfdb.com/stock/NVDA/'},
 {'Holding': 'Alphabet Inc. Class A',
  'Share': '2.03%',
  'Symbol': 'GOOGL',
  'Url': 'https://etfdb.com/stock/GOOGL/'},
 {'Holding': 'Meta Platforms Inc. Class A',
  'Share': '1.84%',
  'Symbol': 'META',
  'Url': 'https://etfdb.com/stock/META/'},
 {'Holding': 'Tesla, Inc.',
  'Share': '1.83%',
  'Symbol': 'TSLA',
  'Url': 'https://etfdb.com/stock/TSLA/'},
 {'Holding': 'Alphabet Inc. Class C',
  'Share': '1.76%',
  'Symbol': 'GOOG',
  'Url': 'https://etfdb.com/stock/GOOG/'},
 {'Holding': 'Berkshire Hathaway Inc. Class B',
  'Share': '1.67%',
  'Symbol': 'BRK.B',
  'Url': 'https://etfdb.com/stock/BRK.B/'},
 {'Holding': 'UnitedHealth Group Incorporated',
  'Share': '1.25%',
  'Symbol': 'UNH',
  'Url': 'https://etfdb.com/stock/UNH/'},
 {'Holding': 'JPMorgan Chase & Co.',
  'Share': '1.22%',
  'Symbol': 'JPM',
  'Url': 'https://etfdb.com/stock/JPM/'},
 {'Holding': 'Johnson & Johnson',
  'Share': '1.17%',
  'Symbol': 'JNJ',
  'Url': 'https://etfdb.com/stock/JNJ/'},
 {'Holding': 'Exxon Mobil Corporation',
  'Share': '1.16%',
  'Symbol': 'XOM',
  'Url': 'https://etfdb.com/stock/XOM/'},
 {'Holding': 'Visa Inc. Class A',
  'Share': '1.03%',
  'Symbol': 'V',
  'Url': 'https://etfdb.com/stock/V/'},
 {'Holding': 'Broadcom Inc.',
  'Share': '0.98%',
  'Symbol': 'AVGO',
  'Url': 'https://etfdb.com/stock/AVGO/'}]

Get exposures

>>> spy.exposure
{'Asset Allocation': {'CASH': 0.38, 'Share/Common/Ordinary': 99.59},
 'Country Breakdown': {'Bermuda': 0.13,
                       'Ireland': 1.63,
                       'Israel': 0.02,
                       'Netherlands': 0.14,
                       'Other': 0.38,
                       'Switzerland': 0.4,
                       'United Kingdom': 0.69,
                       'United States': 96.58},
 'Market Cap Breakdown': {'Large': 97.42, 'Micro': 0, 'Mid': 2.2, 'Small': 0},
 'Market Tier Breakdown': {},
 'Region Breakdown': {'North, Central and South America': 99.59, 'Other': 0.38},
 'Sector Breakdown': {'CASH': 0.38,
                      'Commercial Services': 3.02,
                      'Communications': 0.84,
                      'Consumer Durables': 2.65,
                      'Consumer Non-Durables': 4.78,
                      'Consumer Services': 3.43,
                      'Distribution Services': 0.92,
                      'Electronic Technology': 17.34,
                      'Energy Minerals': 3.64,
                      'Finance': 11.96,
                      'Health Services': 2.55,
                      'Health Technology': 9.99,
                      'Industrial Services': 1.02,
                      'Non-Energy Minerals': 0.54,
                      'Process Industries': 1.98,
                      'Producer Manufacturing': 3.55,
                      'Retail Trade': 7.19,
                      'Technology Services': 20.34,
                      'Transportation': 1.5,
                      'Utilities': 2.35}
 }

Get quotes

>>> spy.get_quotes(interval="daily", periods=7)
[{'close': 424.5,
  'date': datetime.date(2023, 10, 5),
  'high': 425.37,
  'low': 421.1701,
  'open': 424.36,
  'symbol': 'SPY',
  'volume': 70142700},
 {'close': 429.54,
  'date': datetime.date(2023, 10, 6),
  'high': 431.125,
  'low': 420.6,
  'open': 421.97,
  'symbol': 'SPY',
  'volume': 113273300},
 {'close': 432.29,
  'date': datetime.date(2023, 10, 9),
  'high': 432.88,
  'low': 427.0101,
  'open': 427.58,
  'symbol': 'SPY',
  'volume': 80374300},
 {'close': 434.54,
  'date': datetime.date(2023, 10, 10),
  'high': 437.22,
  'low': 432.53,
  'open': 432.94,
  'symbol': 'SPY',
  'volume': 78607200},
 {'close': 436.32,
  'date': datetime.date(2023, 10, 11),
  'high': 436.58,
  'low': 433.18,
  'open': 435.64,
  'symbol': 'SPY',
  'volume': 62451700},
 {'close': 433.66,
  'date': datetime.date(2023, 10, 12),
  'high': 437.335,
  'low': 431.23,
  'open': 436.95,
  'symbol': 'SPY',
  'volume': 81154200},
 {'close': 431.5,
  'date': datetime.date(2023, 10, 13),
  'high': 436.45,
  'low': 429.88,
  'open': 435.21,
  'symbol': 'SPY',
  'volume': 95201100}]

You can also wrap ETF object with pandas DataFrames, and work with the data in tabular form. You will have access to mostly the same methods as etf has, but as a result you will see DataFrame or Series.

>>> from etfpy import ETF
>>> spy = ETF("SPY")
>>> spy_tabular = spy.to_tabular()
>>> spy.exposure_by_sector
Metric Value
Technology Services 20.34
Electronic Technology 17.34
Finance 11.96
Health Technology 9.99
Retail Trade 7.19
Consumer Non-Durables 4.78
Energy Minerals 3.64
Producer Manufacturing 3.55
Consumer Services 3.43
Commercial Services 3.02
Consumer Durables 2.65
Health Services 2.55
Utilities 2.35
Process Industries 1.98
Transportation 1.50
Industrial Services 1.02
Distribution Services 0.92
Communications 0.84
Non-Energy Minerals 0.54
CASH 0.38
>>> spy.info
Metric Value
Symbol SPY
Url https://etfdb.com/etf/SPY
Issuer https://etfdb.com/issuer/state-street/
Brand https://etfdb.com/issuer/spdr/
Inception Jan 22, 1993
Index Tracked https://etfdb.com/index/sp-500-index/
Last Updated Oct 11, 2023
Category Size and Style
Asset Class Equity
Segment Equity: U.S. - Large Cap
Focus Large Cap
Niche Broad-based
Strategy Vanilla
Weighting Scheme Market Cap
>>> spy.info_numeric
Metric Value
Expense Ratio (%) 0.09
Price ($) 434.54
Change($) 2.25
P/E Ratio 17.86
52 Week Lo ($) 342.72
52 Week Hi ($) 457.83
AUM ($) 398435000000.00
Shares 927600000.00
>>> spy.dividends
dividend dividend_date %_annual_dividend_rate annual_dividend_yield
SPY 1.58 2023-09-15 6.51 1.51
ETF Database Category Average 0.33 None 0.92 1.30
FactSet Segment Average 0.17 None 0.59 1.33
>>> spy.technicals
Metric Value
20 Day MA ($) 432.92
60 Day MA ($) 441.77
MACD 15 Period 5.54
MACD 100 Period -2.65
Williams % Range 10 Day 15.73
Williams % Range 20 Day 51.02
RSI 10 Day 55
RSI 20 Day 49
RSI 30 Day 49
Ultimate Oscillator 60
Lower Bollinger (10 Day) ($) 420.25
Upper Bollinger (10 Day) ($) 434.00
Lower Bollinger (20 Day) ($) 416.98
Upper Bollinger (20 Day) ($) 448.76
Lower Bollinger (30 Day) ($) 418.95
Upper Bollinger (30 Day) ($) 455.88
Support Level 1 ($) 432.31
Support Level 2 ($) 430.07
Resistance Level 1 ($) 437.00
Resistance Level 2 ($) 439.45
Stochastic Oscillator %D (1 Day) 65.76
Stochastic Oscillator %D (5 Day) 72.22
Stochastic Oscillator %K (1 Day) 65.64
Stochastic Oscillator %K (5 Day) 56.38
Tracking Difference Median (%) -0.03
Tracking Difference Max Upside (%) -0.02
Tracking Difference Max Downside (%) -0.10
Median Premium Discount (%) 0.01
Maximum Premium Discount (%) 0.10
Average Spread (%) 1.06
Average Spread ($) 1.06
>>> spy.get_quotes(interval="daily", periods=365)
Symbol Date Open High Low Close Volume
SPY 2022-05-10 404.49 406.08 394.82 399.09 132497200
SPY 2022-05-11 398.07 404.04 391.96 392.75 142361000
SPY 2022-05-12 389.37 395.80 385.15 392.34 125090700
SPY 2022-05-13 396.71 403.18 395.61 401.72 104174400
SPY 2022-05-16 399.98 403.97 397.60 400.09 78622400
-------- ------ -------- -------- -------- -------- ------------
-------- ------ -------- -------- -------- -------- ------------
SPY 2023-10-09 427.58 432.88 427.01 432.29 80374300
SPY 2023-10-10 432.94 437.22 432.53 434.54 78607200
SPY 2023-10-11 435.64 436.58 433.18 436.32 62451700
SPY 2023-10-12 436.95 437.33 431.23 433.66 81154200

If you want to scrape list of all etfs with some basic information in terminal use:

python etfpy/scripts/scrape_etfs.py
or 
bash jobs/run_scrape_etfs.sh
or
make scrape

Output data will be stored in .\etfpy\data\etfs\etfs_list.json

Run tests & check coverage

# run all tests
make test

# pytest cov
make cov

To lint

make pretty

Contributing

Pull requests are welcome.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

etfpy-1.0.20.tar.gz (143.9 kB view details)

Uploaded Source

Built Distribution

etfpy-1.0.20-py3-none-any.whl (146.4 kB view details)

Uploaded Python 3

File details

Details for the file etfpy-1.0.20.tar.gz.

File metadata

  • Download URL: etfpy-1.0.20.tar.gz
  • Upload date:
  • Size: 143.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for etfpy-1.0.20.tar.gz
Algorithm Hash digest
SHA256 7679bde9df24d51c399f014a2085fb363a5a4d30555defff6710a9fd55e2bdde
MD5 78770eed2d397745423adc85eb472a26
BLAKE2b-256 e6eb692dfdf7f9750922d84920d15048185e7296cc5eb4498397583d699b8298

See more details on using hashes here.

File details

Details for the file etfpy-1.0.20-py3-none-any.whl.

File metadata

  • Download URL: etfpy-1.0.20-py3-none-any.whl
  • Upload date:
  • Size: 146.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for etfpy-1.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 258f648ad4936c1e1d1b2d0180a2a3e14b541c924111bac7b80cf02251e6ae2d
MD5 72dfef54e7d94a4799d63c80abea4588
BLAKE2b-256 a46e3f0ee399ba1a3ce4024a9b82949e1913745e65fddee48968b0351979d05d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page