Skip to main content

Predict Race/Ethnicity Based on Sequence of Characters in the Name

Project description

ethnicolr: Predict Race and Ethnicity From Name

https://github.com/appeler/ethnicolr/workflows/test/badge.svg https://img.shields.io/pypi/v/ethnicolr.svg https://anaconda.org/soodoku/ethnicolr/badges/version.svg https://static.pepy.tech/badge/ethnicolr

We exploit the US census data, the Florida voting registration data, and the Wikipedia data collected by Skiena and colleagues, to predict race and ethnicity based on first and last name or just the last name. The granularity at which we predict the race depends on the dataset. For instance, Skiena et al.’ Wikipedia data is at the ethnic group level, while the census data we use in the model (the raw data has additional categories of Native Americans and Bi-racial) merely categorizes between Non-Hispanic Whites, Non-Hispanic Blacks, Asians, and Hispanics.

New Package With New Models in Pytorch

https://github.com/appeler/ethnicolr2

Streamlit App

https://ethnicolr.streamlit.app/

Caveats and Notes

If you picked a person at random with the last name ‘Smith’ in the US in 2010 and asked us to guess this person’s race (as measured by the census), the best guess would be based on what is available from the aggregated Census file. It is the Bayes Optimal Solution. So what good are last-name-only predictive models for? A few things—if you want to impute race and ethnicity for last names that are not in the census file, infer the race and ethnicity in different years than when the census was conducted (if some assumptions hold), infer the race of people in different countries (if some assumptions hold), etc. The biggest benefit comes in cases where both the first name and last name are known.

Install

We strongly recommend installing ethnicolor inside a Python virtual environment (see venv documentation)

pip install ethnicolr

Or

conda install -c soodoku ethnicolr

Notes:

  • The models are run and verified on TensorFlow 2.x using Python 3.7 and 3.8.

  • If you install on Windows, Theano installation typically needs admin. privileges on the shell.

General API

To see the available command line options for any function, please type in <function-name> --help

# census_ln --help
usage: census_ln [-h] [-y {2000,2010}] [-o OUTPUT] -l LAST input

Appends Census columns by last name

positional arguments:
  input                 Input file

optional arguments:
  -h, --help            show this help message and exit
  -y {2000,2010}, --year {2000,2010}
                        Year of Census data (default=2000)
  -o OUTPUT, --output OUTPUT
                        Output file with Census data columns
  -l LAST, --last LAST  Name of the column containing the last name

Examples

To append census data from 2010 to a file with column header in the first row, specify the column name carrying last names using the -l option, keeping the rest the same:

census_ln -y 2010 -o output-census2010.csv -l last_name input-with-header.csv

To predict race/ethnicity using Wikipedia full name model, specify the column name of last name and first name by using -l and -f flags respectively.

pred_wiki_name -o output-wiki-pred-race.csv -l last_name -f first_name input-with-header.csv

Functions

We expose 6 functions, each of which either takes a pandas DataFrame or a CSV.

  • census_ln(df, lname_col, year=2000)

    • What it does:

      • Removes extra space

      • For names in the census file, it appends relevant data of what probability the name provided is of a certain race/ethnicity

Parameters

df : {DataFrame, csv} Pandas dataframe of CSV file contains the names of the individual to be inferred

lname_col : {string} name of the column containing the last name

Year : {2000, 2010}, default=2000 year of census to use

  • Output: Appends the following columns to the pandas DataFrame or CSV: pctwhite, pctblack, pctapi, pctaian, pct2prace, pcthispanic. See here for what the column names mean.

    >>> import pandas as pd
    
    >>> from ethnicolr import census_ln, pred_census_ln
    
    >>> names = [{'name': 'smith'},
    ...         {'name': 'zhang'},
    ...         {'name': 'jackson'}]
    
    >>> df = pd.DataFrame(names)
    
    >>> df
          name
    0    smith
    1    zhang
    2  jackson
    
    >>> census_ln(df, 'name')
          name pctwhite pctblack pctapi pctaian pct2prace pcthispanic
    0    smith    73.35    22.22   0.40    0.85      1.63        1.56
    1    zhang     0.61     0.09  98.16    0.02      0.96        0.16
    2  jackson    41.93    53.02   0.31    1.04      2.18        1.53
  • pred_census_ln(df, lname_col, year=2000, num_iter=100, conf_int=1.0)

    Parameters

    df : {DataFrame, csv} Pandas dataframe of CSV file contains the names of the individual to be inferred

    namecol : {string} name of the column containing the last name

    year : {2000, 2010}, default=2000 year of census to use

    num_iter : int, default=100 number of iterations to calculate uncertainty in model

    conf_int : float, default=1.0 confidence interval in predicted class

    • Output: Appends the following columns to the pandas DataFrame or CSV: race (white, black, asian, or hispanic), api (percentage chance asian), black, hispanic, white. For each race it will provide the mean, standard error, lower & upper bound of confidence interval

    (Using the same dataframe from example above)

    >>> census_ln(df, 'name')
          name pctwhite pctblack pctapi pctaian pct2prace pcthispanic
    0    smith    73.35    22.22   0.40    0.85      1.63        1.56
    1    zhang     0.61     0.09  98.16    0.02      0.96        0.16
    2  jackson    41.93    53.02   0.31    1.04      2.18        1.53
    
    >>> census_ln(df, 'name', 2010)
          name   race pctwhite pctblack pctapi pctaian pct2prace pcthispanic
    0    smith  white     70.9    23.11    0.5    0.89      2.19         2.4
    1    zhang    api     0.99     0.16  98.06    0.02      0.62        0.15
    2  jackson  black    39.89    53.04   0.39    1.06      3.12         2.5
    
    >>> pred_census_ln(df, 'name')
          name   race       api     black  hispanic     white
    0    smith  white  0.002019  0.247235  0.014485  0.736260
    1    zhang    api  0.997807  0.000149  0.000470  0.001574
    2  jackson  black  0.002797  0.528193  0.014605  0.454405
  • pred_wiki_ln( df, lname_col, num_iter=100, conf_int=1.0)

    • What it does:

    Parameters

    df : {DataFrame, csv} Pandas dataframe of CSV file contains the names of the individual to be inferred

    lname_col : {string} name of the column containing the last name

    num_iter : int, default=100 number of iterations to calculate uncertainty in model

    conf_int : float, default=1.0 confidence interval in predicted class

    • Output: Appends the following columns to the pandas DataFrame or CSV: race (categorical variable — category with the highest probability). For each race it will provide the mean, standard error, lower & upper bound of confidence interval

    "Asian,GreaterEastAsian,EastAsian",
    "Asian,GreaterEastAsian,Japanese", "Asian,IndianSubContinent",
    "GreaterAfrican,Africans", "GreaterAfrican,Muslim",
    "GreaterEuropean,British","GreaterEuropean,EastEuropean",
    "GreaterEuropean,Jewish","GreaterEuropean,WestEuropean,French",
    "GreaterEuropean,WestEuropean,Germanic","GreaterEuropean,WestEuropean,Hispanic",
    "GreaterEuropean,WestEuropean,Italian","GreaterEuropean,WestEuropean,Nordic".
    >>> import pandas as pd
    
    >>> names = [
    ...             {"last": "smith", "first": "john", "true_race": "GreaterEuropean,British"},
    ...             {
    ...                 "last": "zhang",
    ...                 "first": "simon",
    ...                 "true_race": "Asian,GreaterEastAsian,EastAsian",
    ...             },
    ...         ]
    >>> df = pd.DataFrame(names)
    
    >>> from ethnicolr import pred_wiki_ln, pred_wiki_name
    
    >>> odf = pred_wiki_ln(df,'last', conf_int=0.9)
    ['Asian,GreaterEastAsian,EastAsian', 'Asian,GreaterEastAsian,Japanese', 'Asian,IndianSubContinent', 'GreaterAfrican,Africans', 'GreaterAfrican,Muslim', 'GreaterEuropean,British', 'GreaterEuropean,EastEuropean', 'GreaterEuropean,Jewish', 'GreaterEuropean,WestEuropean,French', 'GreaterEuropean,WestEuropean,Germanic', 'GreaterEuropean,WestEuropean,Hispanic', 'GreaterEuropean,WestEuropean,Italian', 'GreaterEuropean,WestEuropean,Nordic']
    
    >>> odf
       last  first                         true_race  ...  GreaterEuropean,WestEuropean,Nordic_lb  GreaterEuropean,WestEuropean,Nordic_ub                              race
    0  Smith   john           GreaterEuropean,British                               0.016103  ...                                 0.014135                                0.007382                                0.048828           GreaterEuropean,British
    1  Zhang  simon  Asian,GreaterEastAsian,EastAsian                               0.863391  ...                                 0.017452                                0.001844                                0.027252  Asian,GreaterEastAsian,EastAsian
    
    [2 rows x 56 columns]
    
    >>> odf.iloc[0, :8]
    last                                                       Smith
    first                                                       john
    true_race                                GreaterEuropean,British
    Asian,GreaterEastAsian,EastAsian_mean                   0.016103
    Asian,GreaterEastAsian,EastAsian_std                    0.009735
    Asian,GreaterEastAsian,EastAsian_lb                     0.005873
    Asian,GreaterEastAsian,EastAsian_ub                     0.034637
    Asian,GreaterEastAsian,Japanese_mean                    0.003814
    Name: 0, dtype: object
  • pred_wiki_name(df, namecol, num_iter=100, conf_int=1.0)

    • What it does:

    Parameters

    df : {DataFrame, csv} Pandas dataframe of CSV file contains the names of the individual to be inferred

    namecol : {string} name of the column containing the name.

    num_iter : int, default=100 number of iterations to calculate uncertainty of predictions

    conf_int : float, default=1.0 confidence interval

    • Output: Appends the following columns to the pandas DataFrame or CSV: race (categorical variable—category with the highest probability), “Asian,GreaterEastAsian,EastAsian”, “Asian,GreaterEastAsian,Japanese”, “Asian,IndianSubContinent”, “GreaterAfrican,Africans”, “GreaterAfrican,Muslim”, “GreaterEuropean,British”,”GreaterEuropean,EastEuropean”, “GreaterEuropean,Jewish”,”GreaterEuropean,WestEuropean,French”, “GreaterEuropean,WestEuropean,Germanic”,”GreaterEuropean,WestEuropean,Hispanic”, “GreaterEuropean,WestEuropean,Italian”,”GreaterEuropean,WestEuropean,Nordic”. For each race it will provide the mean, standard error, lower & upper bound of confidence interval

    (Using the same dataframe from example above)

    >>> odf = pred_wiki_name(df,'last', 'first', conf_int=0.9)
    ['Asian,GreaterEastAsian,EastAsian', 'Asian,GreaterEastAsian,Japanese', 'Asian,IndianSubContinent', 'GreaterAfrican,Africans', 'GreaterAfrican,Muslim', 'GreaterEuropean,British', 'GreaterEuropean,EastEuropean', 'GreaterEuropean,Jewish', 'GreaterEuropean,WestEuropean,French', 'GreaterEuropean,WestEuropean,Germanic', 'GreaterEuropean,WestEuropean,Hispanic', 'GreaterEuropean,WestEuropean,Italian', 'GreaterEuropean,WestEuropean,Nordic']
    
    >>> odf
       last  first                         true_race       __name  Asian,GreaterEastAsian,EastAsian_mean  ...  GreaterEuropean,WestEuropean,Nordic_mean  GreaterEuropean,WestEuropean,Nordic_std  GreaterEuropean,WestEuropean,Nordic_lb  GreaterEuropean,WestEuropean,Nordic_ub                              race
    0  Smith   john           GreaterEuropean,British   Smith John                               0.004111  ...                                  0.006246                                 0.004760                                0.001048                                0.016288           GreaterEuropean,British
    1  Zhang  simon  Asian,GreaterEastAsian,EastAsian  Zhang Simon                               0.944203  ...                                  0.000793                                 0.002557                                0.000019                                0.002470  Asian,GreaterEastAsian,EastAsian
    
    [2 rows x 57 columns]
    
    >>> odf.iloc[0,:8]
    last                                                       Smith
    first                                                       john
    true_race                                GreaterEuropean,British
    __name                                                Smith John
    Asian,GreaterEastAsian,EastAsian_mean                   0.004111
    Asian,GreaterEastAsian,EastAsian_std                    0.002929
    Asian,GreaterEastAsian,EastAsian_lb                     0.001356
    Asian,GreaterEastAsian,EastAsian_ub                     0.010571
    Name: 0, dtype: object
  • pred_fl_reg_ln(df, lname_col, num_iter=100, conf_int=1.0)

    Parameters

    df : {DataFrame, csv} Pandas dataframe of CSV file contains the names of the individual to be inferred

    lname_col : {string} name of the column containing the last name

    num_iter : int, default=100 number of iterations to calculate the uncertainty

    conf_int : float, default=1.0 confidence interval

    • Output: Appends the following columns to the pandas DataFrame or CSV: race (white, black, asian, or hispanic), asian (percentage chance Asian), hispanic, nh_black, nh_white. For each race it will provide the mean, standard error, lower & upper bound of confidence interval

    >>> import pandas as pd
    
    >>> names = [
    ...             {"last": "sawyer", "first": "john", "true_race": "nh_white"},
    ...             {"last": "torres", "first": "raul", "true_race": "hispanic"},
    ...         ]
    
    >>> df = pd.DataFrame(names)
    
    >>> from ethnicolr import pred_fl_reg_ln, pred_fl_reg_name, pred_fl_reg_ln_five_cat, pred_fl_reg_name_five_cat
    
    >>> odf = pred_fl_reg_ln(df, 'last', conf_int=0.9)
    ['asian', 'hispanic', 'nh_black', 'nh_white']
    
    >>> odf
       last first true_race  asian_mean  asian_std  asian_lb  asian_ub  hispanic_mean  hispanic_std  hispanic_lb  hispanic_ub  nh_black_mean  nh_black_std  nh_black_lb  nh_black_ub  nh_white_mean  nh_white_std  nh_white_lb  nh_white_ub      race
    0  Sawyer  john  nh_white    0.009859   0.006819  0.005338  0.019673       0.021488      0.004602     0.014802     0.030148       0.180929      0.052784     0.105756     0.270238       0.787724      0.051082     0.705290     0.860286  nh_white
    1  Torres  raul  hispanic    0.006463   0.001985  0.003915  0.010146       0.878119      0.021998     0.839274     0.909151       0.013118      0.005002     0.007364     0.021633       0.102300      0.017828     0.075911     0.130929  hispanic
    
    [2 rows x 20 columns]
    
    >>> odf.iloc[0]
    last               Sawyer
    first                john
    true_race        nh_white
    asian_mean       0.009859
    asian_std        0.006819
    asian_lb         0.005338
    asian_ub         0.019673
    hispanic_mean    0.021488
    hispanic_std     0.004602
    hispanic_lb      0.014802
    hispanic_ub      0.030148
    nh_black_mean    0.180929
    nh_black_std     0.052784
    nh_black_lb      0.105756
    nh_black_ub      0.270238
    nh_white_mean    0.787724
    nh_white_std     0.051082
    nh_white_lb       0.70529
    nh_white_ub      0.860286
    race             nh_white
    Name: 0, dtype: object
  • pred_fl_reg_name(df, lname_col, num_iter=100, conf_int=1.0)

    • What it does:

    Parameters

    df : {DataFrame, csv} Pandas dataframe of CSV file contains the names of the individual to be inferred

    namecol : {list} name of the column containing the name.

    num_iter : int, default=100 number of iterations to calculate the uncertainty

    conf_int : float, default=1.0 confidence interval in predicted class

    • Output: Appends the following columns to the pandas DataFrame or CSV: race (white, black, asian, or hispanic), asian (percentage chance Asian), hispanic, nh_black, nh_white. For each race it will provide the mean, standard error, lower & upper bound of confidence interval

    (Using the same dataframe from example above)

    >>> odf = pred_fl_reg_name(df, 'last', 'first', conf_int=0.9)
    ['asian', 'hispanic', 'nh_black', 'nh_white']
    
    >>> odf
       last first true_race  asian_mean  asian_std  asian_lb  asian_ub  hispanic_mean  hispanic_std  hispanic_lb  hispanic_ub  nh_black_mean  nh_black_std  nh_black_lb  nh_black_ub  nh_white_mean  nh_white_std  nh_white_lb  nh_white_ub      race
    0  Sawyer  john  nh_white    0.001534   0.000850  0.000636  0.002691       0.006818      0.002557     0.003684     0.011660       0.028068      0.015095     0.011488     0.055149       0.963581      0.015738     0.935445     0.983224  nh_white
    1  Torres  raul  hispanic    0.005791   0.002906  0.002446  0.011748       0.890561      0.029581     0.841328     0.937706       0.011397      0.004682     0.005829     0.020796       0.092251      0.026675     0.049868     0.139210  hispanic
    
    >>> odf.iloc[1]
    last               Torres
    first                raul
    true_race        hispanic
    asian_mean       0.005791
    asian_std        0.002906
    asian_lb         0.002446
    asian_ub         0.011748
    hispanic_mean    0.890561
    hispanic_std     0.029581
    hispanic_lb      0.841328
    hispanic_ub      0.937706
    nh_black_mean    0.011397
    nh_black_std     0.004682
    nh_black_lb      0.005829
    nh_black_ub      0.020796
    nh_white_mean    0.092251
    nh_white_std     0.026675
    nh_white_lb      0.049868
    nh_white_ub       0.13921
    race             hispanic
    Name: 1, dtype: object
  • pred_fl_reg_ln_five_cat(df, namecol, num_iter=100, conf_int=1.0)

    Parameters

    df : {DataFrame, csv} Pandas dataframe of CSV file contains the names of the individual to be inferred

    lname_col : {string, list, int} name of location of the column containing the last name

    num_iter : int, default=100 number of iterations to calculate uncertainty

    conf_int : float, default=1.0 confidence interval

    • Output: Appends the following columns to the pandas DataFrame or CSV: race (white, black, asian, hispanic or other), asian (percentage chance Asian), hispanic, nh_black, nh_white, other. For each race it will provide the mean, standard error, lower & upper bound of confidence interval

    (Using the same dataframe from example above)

    >>> odf = pred_fl_reg_ln_five_cat(df,'last')
    ['asian', 'hispanic', 'nh_black', 'nh_white', 'other']
    
    >>> odf
       last first true_race  asian_mean  asian_std  asian_lb  asian_ub  hispanic_mean  hispanic_std  ...  nh_white_mean  nh_white_std  nh_white_lb  nh_white_ub  other_mean  other_std  other_lb  other_ub      race
    0  Sawyer  john  nh_white    0.100038   0.020539  0.073266  0.143334       0.044263      0.013077  ...       0.376639      0.048289     0.296989     0.452834    0.248466   0.021040  0.219721  0.283785  nh_white
    1  Torres  raul  hispanic    0.062390   0.021863  0.033837  0.103737       0.774414      0.043238  ...       0.030393      0.009591     0.019713     0.046483    0.117761   0.019524  0.089418  0.150615  hispanic
    
    [2 rows x 24 columns]
    
    >>> odf.iloc[0]
    last               Sawyer
    first                john
    true_race        nh_white
    asian_mean       0.100038
    asian_std        0.020539
    asian_lb         0.073266
    asian_ub         0.143334
    hispanic_mean    0.044263
    hispanic_std     0.013077
    hispanic_lb       0.02476
    hispanic_ub      0.067965
    nh_black_mean    0.230593
    nh_black_std     0.063948
    nh_black_lb      0.130577
    nh_black_ub      0.343513
    nh_white_mean    0.376639
    nh_white_std     0.048289
    nh_white_lb      0.296989
    nh_white_ub      0.452834
    other_mean       0.248466
    other_std         0.02104
    other_lb         0.219721
    other_ub         0.283785
    race             nh_white
    Name: 0, dtype: object
  • pred_fl_reg_name_five_cat(df, namecol, num_iter=100, conf_int=1.0)

    • What it does:

    Parameters

    df : {DataFrame, csv} Pandas dataframe of CSV file contains the names of the individual to be inferred

    namecol : {string, list} string or list of the name or location of the column containing the first name, last name.

    num_iter : int, default=100 number of iterations to calculate uncertainty

    conf_int : float, default=1.0 confidence interval

    • Output: Appends the following columns to the pandas DataFrame or CSV: race (white, black, asian, hispanic, or other), asian (percentage chance Asian), hispanic, nh_black, nh_white, other. For each race it will provide the mean, standard error, lower & upper bound of confidence interval

    (Using the same dataframe from example above)

    >>> odf = pred_fl_reg_name_five_cat(df, 'last','first')
    ['asian', 'hispanic', 'nh_black', 'nh_white', 'other']
    
    >>> odf
       last first true_race  asian_mean  asian_std  asian_lb  asian_ub  hispanic_mean  hispanic_std  ...  nh_white_mean  nh_white_std  nh_white_lb  nh_white_ub  other_mean  other_std  other_lb  other_ub      race
    0  Sawyer  john  nh_white    0.039310   0.011657  0.025982  0.059719       0.019737      0.005813  ...       0.650306      0.059327     0.553913     0.733201    0.192242   0.021004  0.160185  0.226063  nh_white
    1  Torres  raul  hispanic    0.020086   0.011765  0.008240  0.041741       0.899110      0.042237  ...       0.019073      0.009901     0.010166     0.040081    0.055774   0.017897  0.036245  0.088741  hispanic
    
    [2 rows x 24 columns]
    
    >>> odf.iloc[1]
    last               Torres
    first                raul
    true_race        hispanic
    asian_mean       0.020086
    asian_std        0.011765
    asian_lb          0.00824
    asian_ub         0.041741
    hispanic_mean     0.89911
    hispanic_std     0.042237
    hispanic_lb      0.823799
    hispanic_ub      0.937612
    nh_black_mean    0.005956
    nh_black_std     0.006528
    nh_black_lb      0.002686
    nh_black_ub      0.010134
    nh_white_mean    0.019073
    nh_white_std     0.009901
    nh_white_lb      0.010166
    nh_white_ub      0.040081
    other_mean       0.055774
    other_std        0.017897
    other_lb         0.036245
    other_ub         0.088741
    race             hispanic
    Name: 1, dtype: object
  • pred_nc_reg_name(df, namecol, num_iter=100, conf_int=1.0)

    • What it does:

    Parameters

    df : {DataFrame, csv} Pandas dataframe of CSV file contains the names of the individual to be inferred

    namecol : {string, list} string or list of the name or location of the column containing the first name, last name.

    num_iter : int, default=100 number of iterations to calculate uncertainty

    conf_int : float, default=1.0 confidence interval

    • Output: Appends the following columns to the pandas DataFrame or CSV: race + ethnicity. The codebook is here. For each race it will provide the mean, standard error, lower & upper bound of confidence interval

    >>> import pandas as pd
    
    >>> names = [
    ...             {"last": "hernandez", "first": "hector", "true_race": "HL+O"},
    ...             {"last": "zhang", "first": "simon", "true_race": "NL+A"},
    ...         ]
    
    >>> df = pd.DataFrame(names)
    
    >>> from ethnicolr import pred_nc_reg_name
    
    >>> odf = pred_nc_reg_name(df, 'last','first', conf_int=0.9)
    ['HL+A', 'HL+B', 'HL+I', 'HL+M', 'HL+O', 'HL+W', 'NL+A', 'NL+B', 'NL+I', 'NL+M', 'NL+O', 'NL+W']
    
    >>> odf
          last   first true_race            __name     HL+A_mean  HL+A_std       HL+A_lb       HL+A_ub     HL+B_mean  HL+B_std       HL+B_lb       HL+B_ub  HL+I_mean  ...     NL+M_mean  NL+M_std       NL+M_lb       NL+M_ub  NL+O_mean  NL+O_std   NL+O_lb   NL+O_ub  NL+W_mean  NL+W_std   NL+W_lb   NL+W_ub  race
    0  hernandez  hector      HL+O  Hernandez Hector  2.727371e-13       0.0  2.727372e-13  2.727372e-13  6.542178e-04       0.0  6.542183e-04  6.542183e-04   0.000032  ...  7.863581e-06       0.0  7.863589e-06  7.863589e-06   0.184513       0.0  0.184514  0.184514   0.001256       0.0  0.001256  0.001256  HL+O
    1      zhang   simon      NL+A       Zhang Simon  1.985421e-06       0.0  1.985423e-06  1.985423e-06  8.708256e-09       0.0  8.708265e-09  8.708265e-09   0.000049  ...  1.446786e-07       0.0  1.446784e-07  1.446784e-07   0.003238       0.0  0.003238  0.003238   0.000154       0.0  0.000154  0.000154  NL+A
    
    [2 rows x 53 columns]
    
    >>> odf.iloc[0]
    last                hernandez
    first                  hector
    true_race                HL+O
    __name       Hernandez Hector
    HL+A_mean                 0.0
    HL+A_std                  0.0
    HL+A_lb                   0.0
    HL+A_ub                   0.0
    HL+B_mean            0.000654
    HL+B_std                  0.0
    HL+B_lb              0.000654
    HL+B_ub              0.000654
    HL+I_mean            0.000032
    HL+I_std                  0.0
    HL+I_lb              0.000032
    HL+I_ub              0.000032
    HL+M_mean            0.000541
    HL+M_std                  0.0
    HL+M_lb              0.000541
    HL+M_ub              0.000541
    HL+O_mean             0.58944
    HL+O_std                  0.0
    HL+O_lb               0.58944
    HL+O_ub               0.58944
    HL+W_mean            0.221309
    HL+W_std                  0.0
    HL+W_lb              0.221309
    HL+W_ub              0.221309
    NL+A_mean            0.000044
    NL+A_std                  0.0
    NL+A_lb              0.000044
    NL+A_ub              0.000044
    NL+B_mean            0.002199
    NL+B_std                  0.0
    NL+B_lb              0.002199
    NL+B_ub              0.002199
    NL+I_mean            0.000004
    NL+I_std                  0.0
    NL+I_lb              0.000004
    NL+I_ub              0.000004
    NL+M_mean            0.000008
    NL+M_std                  0.0
    NL+M_lb              0.000008
    NL+M_ub              0.000008
    NL+O_mean            0.184513
    NL+O_std                  0.0
    NL+O_lb              0.184514
    NL+O_ub              0.184514
    NL+W_mean            0.001256
    NL+W_std                  0.0
    NL+W_lb              0.001256
    NL+W_ub              0.001256
    race                     HL+O
    Name: 0, dtype: object

Application

To illustrate how the package can be used, we impute the race of the campaign contributors recorded by FEC for the years 2000 and 2010 and tally campaign contributions by race.

Data on race of all the people in the DIME data is posted here The underlying python scripts are posted here

Data

In particular, we utilize the last-name–race data from the 2000 census and 2010 census, the Wikipedia data collected by Skiena and colleagues, and the Florida voter registration data from early 2017.

Evaluation

  1. SCAN Health Plan, a Medicare Advantage plan that serves over 200,000 members throughout California used the software to better assess racial disparities of health among the people they serve. They only had racial data on about 47% of their members so used it to learn the race of the remaining 53%. On the data they had labels for, they found .9 AUC and 83% accuracy for the last name model.

  2. Evaluation on NC Data: https://github.com/appeler/nc_race_ethnicity

Authors

Suriyan Laohaprapanon, Gaurav Sood and Bashar Naji

Contributor Code of Conduct

The project welcomes contributions from everyone! In fact, it depends on it. To maintain this welcoming atmosphere, and to collaborate in a fun and productive way, we expect contributors to the project to abide by the Contributor Code of Conduct.

License

The package is released under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ethnicolr-0.9.8.tar.gz (39.4 MB view details)

Uploaded Source

Built Distribution

ethnicolr-0.9.8-py2.py3-none-any.whl (39.5 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file ethnicolr-0.9.8.tar.gz.

File metadata

  • Download URL: ethnicolr-0.9.8.tar.gz
  • Upload date:
  • Size: 39.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for ethnicolr-0.9.8.tar.gz
Algorithm Hash digest
SHA256 eaf8704f95d7a95ed40ec8f0491901e89cd3b2052182dc8e23573f4884ec157d
MD5 407a7cae1085b8f8789293a677d102cf
BLAKE2b-256 dab8abd3b107540585fe3a86d802c43bd78aff6d91fb1aef8e5583d4a02c16a6

See more details on using hashes here.

File details

Details for the file ethnicolr-0.9.8-py2.py3-none-any.whl.

File metadata

  • Download URL: ethnicolr-0.9.8-py2.py3-none-any.whl
  • Upload date:
  • Size: 39.5 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for ethnicolr-0.9.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 97e3252a7fac6b0629de8936e322aa30fdd923a492f873687208e67483fff207
MD5 4758f154f65cd1f62f7293733c0ea5ce
BLAKE2b-256 c8b4e9078645e95fa226bec22c8e5d48c2087ee65791ed6abe146df6ba0cbc0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page