Neural network model compiler for Arm Ethos-U NPUs
Project description
Vela
This tool is used to compile a TensorFlow Lite for Microcontrollers neural network model into an optimised version that can run on an embedded system containing an Arm Ethos-U NPU.
In order to be accelerated by the Ethos-U NPU the network operators must be quantised to either 8-bit (unsigned or signed) or 16-bit (signed).
The optimised model will contain TensorFlow Lite Custom operators for those parts of the model that can be accelerated by the Ethos-U NPU. Parts of the model that cannot be accelerated are left unchanged and will instead run on the Cortex-M series CPU using an appropriate kernel (such as the Arm optimised CMSIS-NN kernels).
After compilation the optimised model can only be run on an Ethos-U NPU embedded system.
The tool will also generate performance estimates (EXPERIMENTAL) for the compiled model.
The tool has limited functionality for compiling a TOSA neural network (EXPERIMENTAL).
TensorFlow Support
Vela is tested by comparing the bit exact numerical behaviour of the Ethos-U optimised operators against that of the corresponding TensorFlow Lite reference kernels (or TensorFlow Lite for Microcontrollers reference kernels in the case of the UNIDIRECTIONAL_SEQUENCE_LSTM operator). The following list indicates which version is used for comparison:
- Vela 4.0.0 to current supports TensorFlow 2.17
- Vela 3.12.0 supports TensorFlow 2.16
- Vela 3.11.0 supports TensorFlow 2.15
- Vela 3.10.0 supports TensorFlow 2.14
- Vela 3.9.0 supports TensorFlow 2.12
- Vela 3.8.0 supports TensorFlow 2.11
- Vela 3.6.0 to 3.7.0 supports TensorFlow 2.10
- Vela 3.5.0 supports TensorFlow 2.9
- Vela 3.4.0 supports TensorFlow 2.8
- Vela 3.3.0 supports TensorFlow 2.7
- Vela 3.1.0 to 3.2.0 supports TensorFlow 2.5
- Vela 2.1.0 to 3.0.0 supports TensorFlow 2.4
- Vela 2.0.0 to 2.0.1 supports TensorFlow 2.3
- Vela 0.1.0 to 1.2.0 supports TensorFlow 2.1
Python Version Support
The majority of Vela's testing is done using a single version of Python, as indicated by the first version in the list below. However, some additional testing is also performed across a range of newer versions starting at the minimum version (pyproject.toml:project.requires-python) indicated in the brackets:
- Vela 3.10.0 to current supports Python 3.10 (3.9)
- Vela 3.9.0 supports Python 3.10 (3.8)
- Vela 3.8.0 supports Python 3.9 (3.8)
- Vela 3.4.0 to 3.7.0 supports Python 3.7 (3.8)
- Vela 3.3.0 supports Python 3.8 (3.7)
- Vela 0.1.0 to 3.2.0 supports Python 3.6 (3.7)
Environment
Vela runs on Linux and Microsoft Windows 10 operating systems.
Prerequisites
The following should be installed prior to the installation of Vela:
- Python 3.10 or compatible
- Development version containing the Python/C API header files
- e.g.
apt install python3.10-dev
oryum install python310-devel
- Pip3
- C99 capable compiler and associated toolchain
- For Linux operating systems, a GNU toolchain is recommended.
- For Microsoft Windows 10, the Microsoft Visual C++ 14.2 Build Tools are recommended. See https://wiki.python.org/moin/WindowsCompilers
Installation
Vela is available to install as a package from PyPi, or as source code from ML Platform. Both methods will automatically install all the required dependencies.
PyPi
Install Vela from PyPi using the following command:
pip3 install ethos-u-vela
ML Platform
First obtain the source code by either downloading the desired TGZ file from:
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela
Or by cloning the git repository:
git clone https://review.mlplatform.org/ml/ethos-u/ethos-u-vela.git
Once you have the source code, Vela can be installed using the following command from the root directory of the repository:
pip3 install .
Advanced Installation for Developers
If you plan to modify the Vela codebase then it is recommended to install Vela
as an editable package to avoid the need to re-install after every modification.
This is done by adding the -e
option to the install command like so:
pip3 install -e .[dev]
If you plan to contribute to the Vela project (highly encouraged!) then it is recommended to install Vela with the development dependencies (see Vela Testing for more details).
Running
Vela is run with an input .tflite
or .tosa
(EXPERIMENTAL) file passed on the
command line. This file contains the neural network to be compiled. The tool then
outputs an optimised .tflite
file with a _vela
suffix in the file name, along
with performance estimate (EXPERIMENTAL) CSV files, all to the output directory.
It also prints a performance estimation summary back to the console, see
Vela Performance Estimation Summary.
Example usage:
- Compile the network
my_model.tflite
. The optimised version will be output to./output/my_network_vela.tflite
.
vela my_model.tflite
- Compile the network
/path/to/my_model.tflite
and specify the output to go in the directory./results_dir/
.
vela --output-dir ./results_dir /path/to/my_model.tflite
- Compile a network targeting a particular Ethos-U NPU. The following command selects an Ethos-U65 NPU accelerator configured with 512 MAC units.
vela --accelerator-config ethos-u65-512 my_model.tflite
- Compile a network while minimizing peak SRAM usage, prioritising lower SRAM usage over runtime performance.
vela --optimise Size my_model.tflite
- Compile a network to have maximum performance, i.e. the fastest inference time. This prioritises a higher runtime performance over a lower peak SRAM usage.
vela --optimise Performance my_model.tflite
- Compile a network while optimising for the fastest inference time possible, with an upper bound for the SRAM usage. The memory limit is set in bytes, i.e. run the following example if one requires a limit of 300KB.
vela --optimise Performance --arena-cache-size 300000 my_model.tflite
- Compile a network using a particular embedded system configuration defined in
Vela's configuration file. The following command selects the
My_Sys_Config
system configuration along with theMy_Mem_Mode
memory mode from thevela.ini
configuration file located in the config_files directory.
vela --config Arm/vela.ini --system-config My_Sys_Config --memory-mode My_Mem_Mode my_model.tflite
- To get a list of all available configuration files in the config_files directory:
vela --list-config-files
- To get a list of all available options (see CLI Options section below):
vela --help
Warnings
When running the Vela compiler it may report a number of warning messages to the console. These should all be thoroughly reviewed as they will indicate decisions that the compiler has made in order to create the optimised network.
Example Networks
Some example networks that contain quantised operators which can be compiled by Vela to run on the Ethos-U NPU can be found at: https://tfhub.dev/s?deployment-format=lite&q=quantized
Known Issues
1. NumPy C API version change
Once ethos-u-vela is installed, the user might want to install a different NumPy version that is still within the dependency constraints defined in pyproject.toml.
In some scenarios, doing so might prevent ethos-u-vela from functioning as expected due to incompatibilities between the installed NumPy C headers used in the mlw_codec and the current version of NumPy.
Example scenario:
In the ethos-u-vela source directory, run:
virtualenv -p 3.10 venv
. venv/bin/activate
pip install ethos-u-vela
Next, install a different NumPy version (e.g. 1.21.3)
pip install numpy==1.21.3 --force
Finally, run ethos-u-vela. You might get an error similar to this:
ImportError: NumPy C API version mismatch
(Build-time version: 0x10, Run-time version: 0xe)
This is a known issue most likely caused by a change in the API version in
NumPy after installing ethos-u-vela.
Solution
In order for ethos-u-vela to work with an older version of NumPy that uses different C APIs, you will need to install the desired NumPy version first, and then build ethos-u-vela with that specific NumPy version:
-
Uninstall ethos-u-vela and install the desired version of NumPy
pip uninstall ethos-u-vela pip install numpy==1.21.3 --force
-
Install required build dependencies
pip install "setuptools_scm[toml]<6" wheel
-
Install ethos-u-vela without build isolation. Not using build isolation ensures that the correct version of NumPy is used when copying the C headers in mlw_codec during the build process.
pip install ethos-u-vela --no-build-isolation --no-cache-dir
APIs
Please see Vela External APIs.
Bug Reporting
Please see Vela Community Bug Reporting for a description of how to report bugs.
Contributions
Please see Vela Contributions.
Debug Database
Please see Vela Debug Database.
Inclusive language commitment
This product conforms to Arm’s inclusive language policy and, to the best of our knowledge, does not contain any non-inclusive language. If you find something that concerns you, email terms@arm.com.
Options
Please see Vela CLI Options. This includes a description of the system configuration file format.
Performance
Please see Vela Performance Estimation Summary.
Releases
Please see Vela Releases.
Resources
Additional useful information:
- Arm Products: Ethos-U55 NPU
- Arm Products: Ethos-U65 NPU
- Arm Products: Ethos-U85 NPU
- Arm Developer: Ethos-U55 NPU
- Arm Developer: Ethos-U65 NPU
- Arm Developer: Ethos-U85 NPU
Security
Please see Vela Security.
Supported Operators
Please see Vela Supported Operators for the list of operators supported in this release.
Testing
Please see Vela Testing.
License
Vela is licensed under Apache License 2.0.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file ethos_u_vela-4.0.1-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 1.3 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6719a5142babb3e8af840446dccaeda9d40116aa965ce645b930d811c392569 |
|
MD5 | 07b3541cabf4368789453c1b45d93de7 |
|
BLAKE2b-256 | 1b1a69e5db662824454e3a6a76a198d2d0cd4e5a5b261b13756c32936e91544c |
File details
Details for the file ethos_u_vela-4.0.1-cp312-cp312-win32.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp312-cp312-win32.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.12, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29d45722e3aa104888e47ef021ddfd3f07dbe8f6335bbb65044fa83e81f6cafa |
|
MD5 | 8b3cad6289d5f1c54cda14598c2c0835 |
|
BLAKE2b-256 | 0d5d3f4bd2eb64678dd8be12ec778d80455149e6d85fe01d01a4474670d48fc8 |
File details
Details for the file ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 15c566b1494a07aa21a81ebb0c547e44f488acf882b2a1df8a497c565770219d |
|
MD5 | 124b31b7ac4f9d5b2515c4a6fd647237 |
|
BLAKE2b-256 | d1b7c8f7c616eb393c86053b9320fbdb00e3618f1ba3d3d1be94cd77972a5cf4 |
File details
Details for the file ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 575c895302a8a074d0810301b629abf3c84128d66ae4119d8ab94e90b553cf2a |
|
MD5 | ddb9639152c04ba6b1321a2dbd2ffb9c |
|
BLAKE2b-256 | 841d371cba48220e3fca30027270c50e23ee0eede27cff9b98a5b97ed049392e |
File details
Details for the file ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 1.5 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5c48b666a38a1f035c15427b859599b4fd70508cdac8abe2cac582bd1d9e97ab |
|
MD5 | e6b00a6d2fee501f1277644d1b6a44a0 |
|
BLAKE2b-256 | ecf97b84ef1361443aac0083cbcd8ec649a9bbdfba8f33a9c73982a6f513b0c8 |
File details
Details for the file ethos_u_vela-4.0.1-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 1.4 MB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bef28cfcbdf0eab9a82305ef9795c3c5e9d2b3cb952b2b02b8646d927727dcd1 |
|
MD5 | ad0ac090a3ca778307a76881f60e885f |
|
BLAKE2b-256 | 967922e09b36d23f2e6130f5457d21dbbde29383f48d33008f716eee22933025 |
File details
Details for the file ethos_u_vela-4.0.1-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 1.3 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8c1e52ecb4fa1893ff1079f26d79cd32797eae19ba1534cc226f780c7363723 |
|
MD5 | b6734c66c4804575af1fe8f64380d191 |
|
BLAKE2b-256 | 5a3c7454fb8cbe305fc4b1adfcd720ce0fa43df9e71c5606606267b97c48bc70 |
File details
Details for the file ethos_u_vela-4.0.1-cp311-cp311-win32.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp311-cp311-win32.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8dbf4c8290ae25cb609d318a025421e5aee21c55b6bfdb52a6de21eea2afca48 |
|
MD5 | 137278615424709a1c944c64a1040aeb |
|
BLAKE2b-256 | 5f7062fb5fd272020469bff13f19db7f1ab8e385554670afa897329e2daa6b16 |
File details
Details for the file ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8b1ad569baa83f8c47fcff20b0802ff6555e0932305db90ea1de52a2b29118f |
|
MD5 | 1053e7da5ba775935f5eead185a4a6b1 |
|
BLAKE2b-256 | 503d5b890bde9f9e8748b2ace5284d42b45984a7203fabd5b6ba19a456ac6f1f |
File details
Details for the file ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3fcbb87a4340ca03999d8202b05da3cbf24b70ca746e1f3dc2b43019a8e007dd |
|
MD5 | 3085e70f33826b621a9898de3477c9e3 |
|
BLAKE2b-256 | 2c9409a89bf0e8eab043f79c2dc37a5df5074a757b069e09a070971b0e2f9bf3 |
File details
Details for the file ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 1.5 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ef0726c2eb5d9bba750911b8b9531b1062f44ba1ba94b70f53c236dfbdfe6b7 |
|
MD5 | 2b35475fb58dd15619407794ae842027 |
|
BLAKE2b-256 | cbbd2af4f295a02d129f1bb04565b76ce352ea1128e1bbc8bcbbf00e597eb285 |
File details
Details for the file ethos_u_vela-4.0.1-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 1.4 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 41d39fed486cd704d5216c2aeb1e1dbebf3d602c0e64dc4940a19ed0acddc66e |
|
MD5 | 953d1505ea45a8f9a086b9c645d9456b |
|
BLAKE2b-256 | 7d0e24b6fad6da39338b4f3c9dee60ae889be550c78007ad6ec869c6891bf3c1 |
File details
Details for the file ethos_u_vela-4.0.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 1.3 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e69f3904bc1a3c8bb040d8f211b374af336e65b343d668e932ded7b329d5c24c |
|
MD5 | ca7fcc83547696b1481a062ef231586c |
|
BLAKE2b-256 | 23905cbc5a7763c98dd8a88acccbd0704fcde8d344038a35c8dbc1d29541a968 |
File details
Details for the file ethos_u_vela-4.0.1-cp310-cp310-win32.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp310-cp310-win32.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e06767cb9e2d2e54be08e1a47a4c24027b1565cc949030e44d63fe42dfe40c4f |
|
MD5 | cb1dc7d19f96072f83d87eefdc5d1325 |
|
BLAKE2b-256 | e113a71db819b1edf4e6cfdd7767d89c98fd02c0d748259a6abb279494beeede |
File details
Details for the file ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ad13caa72522dc1f64af222fc88283a00b0a86e3fe5249fc23a0a3c32194e7f8 |
|
MD5 | 99daf3bfd3e5b9f9ee55787c57dc8f4e |
|
BLAKE2b-256 | 53e3f026c44af2300269f0352553a606ad9cbfbfa1b5e4faaa901b3ed82e2b2a |
File details
Details for the file ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 959edd66ed6b8976a0b35685be858c1e2f986bb6e2665677dc0865f384db877b |
|
MD5 | 88e4d69f533ee8c8d5b0004a5b6a3b78 |
|
BLAKE2b-256 | 6d95438817584642f2f56c2a554553fe76590a9e5a08b93a2b95bad6cb7615bd |
File details
Details for the file ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 1.5 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e39d84599b53557b5f550712a66ba509d058324c4a0fac4ad96859440275ad48 |
|
MD5 | b8a99db3491284d5d6c6c37c1c982321 |
|
BLAKE2b-256 | aad628b7a59d751077c22dd0333041d6e04596a728bcbf9da4618a75f0a16569 |
File details
Details for the file ethos_u_vela-4.0.1-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 1.4 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a543832dc801d8f9a5ba14015bb9e3bd851b77d63a19f75ba294607847af5cb7 |
|
MD5 | d661a4794d945286ba9ab1aa08b69b31 |
|
BLAKE2b-256 | 18fcccc3e580dc36b228c0c7ce1f7db34cb8d5fbc8c8892e4630283584ac8abc |
File details
Details for the file ethos_u_vela-4.0.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 1.3 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b595a440df24a9dcc1be1207e0fe9b44c520475853fca00bf4f9b2b1a23224a |
|
MD5 | 8a4654ea02c2b32072c528bd46260e32 |
|
BLAKE2b-256 | aab3bf847e49ee20dbca410dd747de8bf6ab84527d1106cc0ca30dd364c8edc3 |
File details
Details for the file ethos_u_vela-4.0.1-cp39-cp39-win32.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp39-cp39-win32.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.9, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d400086511c91b8aa3a708ed316967bb04a681ce12f3359c93ff9da4219bb982 |
|
MD5 | cb9dbbc2f0709145853aa53fae5c4dbb |
|
BLAKE2b-256 | f50b74e87d28fcefcf0d4762e1cd5958ce31f91bd013925b6598ce7b0b02c789 |
File details
Details for the file ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86a2d1dc33c3f136a9df0e701bdb441b9429c1f30fd462471911be3570e218aa |
|
MD5 | d0ce5a7133db5f74df1dbf49eda5d112 |
|
BLAKE2b-256 | f19690be33ad761539af815d7cca5941a6b65e78fc145dc967dc26aef4e54cae |
File details
Details for the file ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.6 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c55e06c2478abe28e6991b6ef86ad3ccbeb9542496dee1bad560a143245089e |
|
MD5 | ad288b5462f94cdaec313b849839db3b |
|
BLAKE2b-256 | aae954ef9fca4860e48ecb5f349d4e6b230a8c5ee2e86be2471c524ddc41d7b3 |
File details
Details for the file ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 1.5 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5c0997c1c4250c0cddf2556f1d5b2caf9c0b212f5bce7a48a093f32a919d1722 |
|
MD5 | c08216b6d0da4dcf3b779e9a889ccf0c |
|
BLAKE2b-256 | 12c827c7bcc2f07c20d238ed1bd299b8c8b96f0c9859a60c46aecd5554a0130e |
File details
Details for the file ethos_u_vela-4.0.1-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ethos_u_vela-4.0.1-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 1.4 MB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dad5b5f69c5747c8909180191071c1803c5438bdf9cefe3ad68aea2d455ac599 |
|
MD5 | 46a01d94779678d9d4acf6bdf0ce2c58 |
|
BLAKE2b-256 | 794e4a8114c940d73c846ad1ac13135b2e63b9f3f570b0cd1de7d7e96d1acaa6 |