Skip to main content

Neural network model compiler for Arm Ethos-U NPUs

Project description

Vela

This tool is used to compile a TensorFlow Lite for Microcontrollers neural network model into an optimised version that can run on an embedded system containing an Arm Ethos-U NPU.

In order to be accelerated by the Ethos-U NPU the network operators must be quantised to either 8-bit (unsigned or signed) or 16-bit (signed).

The optimised model will contain TensorFlow Lite Custom operators for those parts of the model that can be accelerated by the Ethos-U NPU. Parts of the model that cannot be accelerated are left unchanged and will instead run on the Cortex-M series CPU using an appropriate kernel (such as the Arm optimised CMSIS-NN kernels).

After compilation the optimised model can only be run on an Ethos-U NPU embedded system.

The tool will also generate performance estimates (EXPERIMENTAL) for the compiled model.

The tool has limited functionality for compiling a TOSA neural network (EXPERIMENTAL).

TensorFlow Support

Vela is tested by comparing the bit exact numerical behaviour of the Ethos-U optimised operators against that of the corresponding TensorFlow Lite reference kernels (or TensorFlow Lite for Microcontrollers reference kernels in the case of the UNIDIRECTIONAL_SEQUENCE_LSTM operator). The following list indicates which version is used for comparison:

  • Vela 4.0.0 to current supports TensorFlow 2.17
  • Vela 3.12.0 supports TensorFlow 2.16
  • Vela 3.11.0 supports TensorFlow 2.15
  • Vela 3.10.0 supports TensorFlow 2.14
  • Vela 3.9.0 supports TensorFlow 2.12
  • Vela 3.8.0 supports TensorFlow 2.11
  • Vela 3.6.0 to 3.7.0 supports TensorFlow 2.10
  • Vela 3.5.0 supports TensorFlow 2.9
  • Vela 3.4.0 supports TensorFlow 2.8
  • Vela 3.3.0 supports TensorFlow 2.7
  • Vela 3.1.0 to 3.2.0 supports TensorFlow 2.5
  • Vela 2.1.0 to 3.0.0 supports TensorFlow 2.4
  • Vela 2.0.0 to 2.0.1 supports TensorFlow 2.3
  • Vela 0.1.0 to 1.2.0 supports TensorFlow 2.1

Python Version Support

The majority of Vela's testing is done using a single version of Python, as indicated by the first version in the list below. However, some additional testing is also performed across a range of newer versions starting at the minimum version (pyproject.toml:project.requires-python) indicated in the brackets:

  • Vela 3.10.0 to current supports Python 3.10 (3.9)
  • Vela 3.9.0 supports Python 3.10 (3.8)
  • Vela 3.8.0 supports Python 3.9 (3.8)
  • Vela 3.4.0 to 3.7.0 supports Python 3.7 (3.8)
  • Vela 3.3.0 supports Python 3.8 (3.7)
  • Vela 0.1.0 to 3.2.0 supports Python 3.6 (3.7)

Environment

Vela runs on Linux and Microsoft Windows 10 operating systems.

Prerequisites

The following should be installed prior to the installation of Vela:

  • Python 3.10 or compatible
    • Development version containing the Python/C API header files
    • e.g. apt install python3.10-dev or yum install python310-devel
  • Pip3
  • C99 capable compiler and associated toolchain

Installation

Vela is available to install as a package from PyPi, or as source code from ML Platform. Both methods will automatically install all the required dependencies.

PyPi

Install Vela from PyPi using the following command:

pip3 install ethos-u-vela

ML Platform

First obtain the source code by either downloading the desired TGZ file from:
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela

Or by cloning the git repository:

git clone https://review.mlplatform.org/ml/ethos-u/ethos-u-vela.git

Once you have the source code, Vela can be installed using the following command from the root directory of the repository:

pip3 install .

Advanced Installation for Developers

If you plan to modify the Vela codebase then it is recommended to install Vela as an editable package to avoid the need to re-install after every modification. This is done by adding the -e option to the install command like so:

pip3 install -e .[dev]

If you plan to contribute to the Vela project (highly encouraged!) then it is recommended to install Vela with the development dependencies (see Vela Testing for more details).

Running

Vela is run with an input .tflite or .tosa (EXPERIMENTAL) file passed on the command line. This file contains the neural network to be compiled. The tool then outputs an optimised .tflite file with a _vela suffix in the file name, along with performance estimate (EXPERIMENTAL) CSV files, all to the output directory. It also prints a performance estimation summary back to the console, see Vela Performance Estimation Summary.

Example usage:

  1. Compile the network my_model.tflite. The optimised version will be output to ./output/my_network_vela.tflite.
vela my_model.tflite
  1. Compile the network /path/to/my_model.tflite and specify the output to go in the directory ./results_dir/.
vela --output-dir ./results_dir /path/to/my_model.tflite
  1. Compile a network targeting a particular Ethos-U NPU. The following command selects an Ethos-U65 NPU accelerator configured with 512 MAC units.
vela --accelerator-config ethos-u65-512 my_model.tflite
  1. Compile a network while minimizing peak SRAM usage, prioritising lower SRAM usage over runtime performance.
vela --optimise Size my_model.tflite
  1. Compile a network to have maximum performance, i.e. the fastest inference time. This prioritises a higher runtime performance over a lower peak SRAM usage.
vela --optimise Performance my_model.tflite
  1. Compile a network while optimising for the fastest inference time possible, with an upper bound for the SRAM usage. The memory limit is set in bytes, i.e. run the following example if one requires a limit of 300KB.
vela --optimise Performance --arena-cache-size 300000 my_model.tflite
  1. Compile a network using a particular embedded system configuration defined in Vela's configuration file. The following command selects the My_Sys_Config system configuration along with the My_Mem_Mode memory mode from the vela.ini configuration file located in the config_files directory.
vela --config Arm/vela.ini --system-config My_Sys_Config --memory-mode My_Mem_Mode my_model.tflite
  1. To get a list of all available configuration files in the config_files directory:
vela --list-config-files
  1. To get a list of all available options (see CLI Options section below):
vela --help

Warnings

When running the Vela compiler it may report a number of warning messages to the console. These should all be thoroughly reviewed as they will indicate decisions that the compiler has made in order to create the optimised network.

Example Networks

Some example networks that contain quantised operators which can be compiled by Vela to run on the Ethos-U NPU can be found at: https://tfhub.dev/s?deployment-format=lite&q=quantized

Known Issues

1. NumPy C API version change

Once ethos-u-vela is installed, the user might want to install a different NumPy version that is still within the dependency constraints defined in pyproject.toml.

In some scenarios, doing so might prevent ethos-u-vela from functioning as expected due to incompatibilities between the installed NumPy C headers used in the mlw_codec and the current version of NumPy.

Example scenario:

In the ethos-u-vela source directory, run:

virtualenv -p 3.10 venv
. venv/bin/activate
pip install ethos-u-vela

Next, install a different NumPy version (e.g. 1.21.3)

pip install numpy==1.21.3 --force

Finally, run ethos-u-vela. You might get an error similar to this:

ImportError: NumPy C API version mismatch
(Build-time version: 0x10, Run-time version: 0xe)
This is a known issue most likely caused by a change in the API version in
NumPy after installing ethos-u-vela.

Solution

In order for ethos-u-vela to work with an older version of NumPy that uses different C APIs, you will need to install the desired NumPy version first, and then build ethos-u-vela with that specific NumPy version:

  1. Uninstall ethos-u-vela and install the desired version of NumPy

    pip uninstall ethos-u-vela
    pip install numpy==1.21.3 --force
    
  2. Install required build dependencies

    pip install "setuptools_scm[toml]<6" wheel
    
  3. Install ethos-u-vela without build isolation. Not using build isolation ensures that the correct version of NumPy is used when copying the C headers in mlw_codec during the build process.

    pip install ethos-u-vela --no-build-isolation --no-cache-dir
    

APIs

Please see Vela External APIs.

Bug Reporting

Please see Vela Community Bug Reporting for a description of how to report bugs.

Contributions

Please see Vela Contributions.

Debug Database

Please see Vela Debug Database.

Inclusive language commitment

This product conforms to Arm’s inclusive language policy and, to the best of our knowledge, does not contain any non-inclusive language. If you find something that concerns you, email terms@arm.com.

Options

Please see Vela CLI Options. This includes a description of the system configuration file format.

Performance

Please see Vela Performance Estimation Summary.

Releases

Please see Vela Releases.

Resources

Additional useful information:

Security

Please see Vela Security.

Supported Operators

Please see Vela Supported Operators for the list of operators supported in this release.

Testing

Please see Vela Testing.

License

Vela is licensed under Apache License 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ethos_u_vela-4.0.1-cp312-cp312-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

ethos_u_vela-4.0.1-cp312-cp312-win32.whl (1.2 MB view details)

Uploaded CPython 3.12 Windows x86

ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

ethos_u_vela-4.0.1-cp312-cp312-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

ethos_u_vela-4.0.1-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

ethos_u_vela-4.0.1-cp311-cp311-win32.whl (1.2 MB view details)

Uploaded CPython 3.11 Windows x86

ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

ethos_u_vela-4.0.1-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ethos_u_vela-4.0.1-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

ethos_u_vela-4.0.1-cp310-cp310-win32.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86

ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

ethos_u_vela-4.0.1-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ethos_u_vela-4.0.1-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

ethos_u_vela-4.0.1-cp39-cp39-win32.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86

ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

ethos_u_vela-4.0.1-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file ethos_u_vela-4.0.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e6719a5142babb3e8af840446dccaeda9d40116aa965ce645b930d811c392569
MD5 07b3541cabf4368789453c1b45d93de7
BLAKE2b-256 1b1a69e5db662824454e3a6a76a198d2d0cd4e5a5b261b13756c32936e91544c

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 29d45722e3aa104888e47ef021ddfd3f07dbe8f6335bbb65044fa83e81f6cafa
MD5 8b3cad6289d5f1c54cda14598c2c0835
BLAKE2b-256 0d5d3f4bd2eb64678dd8be12ec778d80455149e6d85fe01d01a4474670d48fc8

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15c566b1494a07aa21a81ebb0c547e44f488acf882b2a1df8a497c565770219d
MD5 124b31b7ac4f9d5b2515c4a6fd647237
BLAKE2b-256 d1b7c8f7c616eb393c86053b9320fbdb00e3618f1ba3d3d1be94cd77972a5cf4

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 575c895302a8a074d0810301b629abf3c84128d66ae4119d8ab94e90b553cf2a
MD5 ddb9639152c04ba6b1321a2dbd2ffb9c
BLAKE2b-256 841d371cba48220e3fca30027270c50e23ee0eede27cff9b98a5b97ed049392e

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c48b666a38a1f035c15427b859599b4fd70508cdac8abe2cac582bd1d9e97ab
MD5 e6b00a6d2fee501f1277644d1b6a44a0
BLAKE2b-256 ecf97b84ef1361443aac0083cbcd8ec649a9bbdfba8f33a9c73982a6f513b0c8

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bef28cfcbdf0eab9a82305ef9795c3c5e9d2b3cb952b2b02b8646d927727dcd1
MD5 ad0ac090a3ca778307a76881f60e885f
BLAKE2b-256 967922e09b36d23f2e6130f5457d21dbbde29383f48d33008f716eee22933025

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d8c1e52ecb4fa1893ff1079f26d79cd32797eae19ba1534cc226f780c7363723
MD5 b6734c66c4804575af1fe8f64380d191
BLAKE2b-256 5a3c7454fb8cbe305fc4b1adfcd720ce0fa43df9e71c5606606267b97c48bc70

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8dbf4c8290ae25cb609d318a025421e5aee21c55b6bfdb52a6de21eea2afca48
MD5 137278615424709a1c944c64a1040aeb
BLAKE2b-256 5f7062fb5fd272020469bff13f19db7f1ab8e385554670afa897329e2daa6b16

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8b1ad569baa83f8c47fcff20b0802ff6555e0932305db90ea1de52a2b29118f
MD5 1053e7da5ba775935f5eead185a4a6b1
BLAKE2b-256 503d5b890bde9f9e8748b2ace5284d42b45984a7203fabd5b6ba19a456ac6f1f

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3fcbb87a4340ca03999d8202b05da3cbf24b70ca746e1f3dc2b43019a8e007dd
MD5 3085e70f33826b621a9898de3477c9e3
BLAKE2b-256 2c9409a89bf0e8eab043f79c2dc37a5df5074a757b069e09a070971b0e2f9bf3

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6ef0726c2eb5d9bba750911b8b9531b1062f44ba1ba94b70f53c236dfbdfe6b7
MD5 2b35475fb58dd15619407794ae842027
BLAKE2b-256 cbbd2af4f295a02d129f1bb04565b76ce352ea1128e1bbc8bcbbf00e597eb285

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 41d39fed486cd704d5216c2aeb1e1dbebf3d602c0e64dc4940a19ed0acddc66e
MD5 953d1505ea45a8f9a086b9c645d9456b
BLAKE2b-256 7d0e24b6fad6da39338b4f3c9dee60ae889be550c78007ad6ec869c6891bf3c1

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e69f3904bc1a3c8bb040d8f211b374af336e65b343d668e932ded7b329d5c24c
MD5 ca7fcc83547696b1481a062ef231586c
BLAKE2b-256 23905cbc5a7763c98dd8a88acccbd0704fcde8d344038a35c8dbc1d29541a968

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e06767cb9e2d2e54be08e1a47a4c24027b1565cc949030e44d63fe42dfe40c4f
MD5 cb1dc7d19f96072f83d87eefdc5d1325
BLAKE2b-256 e113a71db819b1edf4e6cfdd7767d89c98fd02c0d748259a6abb279494beeede

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad13caa72522dc1f64af222fc88283a00b0a86e3fe5249fc23a0a3c32194e7f8
MD5 99daf3bfd3e5b9f9ee55787c57dc8f4e
BLAKE2b-256 53e3f026c44af2300269f0352553a606ad9cbfbfa1b5e4faaa901b3ed82e2b2a

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 959edd66ed6b8976a0b35685be858c1e2f986bb6e2665677dc0865f384db877b
MD5 88e4d69f533ee8c8d5b0004a5b6a3b78
BLAKE2b-256 6d95438817584642f2f56c2a554553fe76590a9e5a08b93a2b95bad6cb7615bd

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e39d84599b53557b5f550712a66ba509d058324c4a0fac4ad96859440275ad48
MD5 b8a99db3491284d5d6c6c37c1c982321
BLAKE2b-256 aad628b7a59d751077c22dd0333041d6e04596a728bcbf9da4618a75f0a16569

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a543832dc801d8f9a5ba14015bb9e3bd851b77d63a19f75ba294607847af5cb7
MD5 d661a4794d945286ba9ab1aa08b69b31
BLAKE2b-256 18fcccc3e580dc36b228c0c7ce1f7db34cb8d5fbc8c8892e4630283584ac8abc

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6b595a440df24a9dcc1be1207e0fe9b44c520475853fca00bf4f9b2b1a23224a
MD5 8a4654ea02c2b32072c528bd46260e32
BLAKE2b-256 aab3bf847e49ee20dbca410dd747de8bf6ab84527d1106cc0ca30dd364c8edc3

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: ethos_u_vela-4.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.15

File hashes

Hashes for ethos_u_vela-4.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d400086511c91b8aa3a708ed316967bb04a681ce12f3359c93ff9da4219bb982
MD5 cb9dbbc2f0709145853aa53fae5c4dbb
BLAKE2b-256 f50b74e87d28fcefcf0d4762e1cd5958ce31f91bd013925b6598ce7b0b02c789

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86a2d1dc33c3f136a9df0e701bdb441b9429c1f30fd462471911be3570e218aa
MD5 d0ce5a7133db5f74df1dbf49eda5d112
BLAKE2b-256 f19690be33ad761539af815d7cca5941a6b65e78fc145dc967dc26aef4e54cae

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9c55e06c2478abe28e6991b6ef86ad3ccbeb9542496dee1bad560a143245089e
MD5 ad288b5462f94cdaec313b849839db3b
BLAKE2b-256 aae954ef9fca4860e48ecb5f349d4e6b230a8c5ee2e86be2471c524ddc41d7b3

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c0997c1c4250c0cddf2556f1d5b2caf9c0b212f5bce7a48a093f32a919d1722
MD5 c08216b6d0da4dcf3b779e9a889ccf0c
BLAKE2b-256 12c827c7bcc2f07c20d238ed1bd299b8c8b96f0c9859a60c46aecd5554a0130e

See more details on using hashes here.

File details

Details for the file ethos_u_vela-4.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ethos_u_vela-4.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dad5b5f69c5747c8909180191071c1803c5438bdf9cefe3ad68aea2d455ac599
MD5 46a01d94779678d9d4acf6bdf0ce2c58
BLAKE2b-256 794e4a8114c940d73c846ad1ac13135b2e63b9f3f570b0cd1de7d7e96d1acaa6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page