Characterize long-period companions using RV trends, astrometric accelerations, and direct imaging
Project description
# Ethraid
Characterize long-period companions with partial orbits.
[![Powered by radvel](https://img.shields.io/badge/powered_by-radvel-EB5368.svg?style=flat)](https://radvel.readthedocs.io/en/latest/)
## Environment ### Create new environment with python 3.7 - $ conda create –name trends_env python=3.7 - $ conda activate trends_env
## Download using pip - $ pip install ethraid - If the installation fails, try 1) Upgrading pip: $ curl https://bootstrap.pypa.io/get-pip.py | python 2) Installing cython: $ pip install cython
## Example CLI usage ### Run orbit fits using parameters in configuration file - $ ethraid run -cf path/to/ethraid/example_config_files/config_191939.py ### Load and plot saved results - $ ethraid plot -cf ethraid/config_files/test1.py -rfp results/test1/test1_raw.h5 -gn 100 ### Print 95% mass and semi-major axis confidence intervals based on derived posterior - $ ethraid less -rfp results/test1/test1_raw.h5 -gn 100
## If downloading repo ### Install dependencies using requirements.txt - $ pip install -r requirements.txt
### Build code from top level of repo - $ cd trends/ - $ python setup.py build_ext –inplace
## Use api_run.py as a reference - $ python api_run.py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file ethraid-0.1.103.tar.gz
.
File metadata
- Download URL: ethraid-0.1.103.tar.gz
- Upload date:
- Size: 1.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b67738c742104d70ec39e15ac69347f25cf1e6957f9380038524f3b2ca070354 |
|
MD5 | b2f5ca6c536bc5bb56a84ad31f4faf7f |
|
BLAKE2b-256 | fdacae7eefc22f886528fa381a14d3237cc4affa84a9c405073a6644ca7cc809 |