Skip to main content

{{ DESCRIPTION }}

Project description

Configurable Airflow UI

This library provides a wrapper around airflow, providing a means to add / remove DAGs (Pipelines) via a web-ui based on a configuration defining the Pipeline 'kinds' and the parameters each kind requires.

Pipeline Dashboard

Pipeline Dashboard

Edit/New Pipeline

Edit/New Pipeline

Pipeline Status

Pipeline Status

Quickstart

  1. Create a folder containing:
  • A configuration.yaml file with the details on your pipeline kinds, e.g.
{
    "kinds": [
        {
            "name": "kind1",
            "display": "Kind 1",
            "fields": [
                {
                    "name": "param1",
                    "display": "Parameter 1"
                },
                {
                    "name": "param2",
                    "display": "Parameter 2"
                }
            ]
        },
        {
            "name": "kind2",
            "display": "Kind 2",
            "fields": [
                {
                    "name": "param3",
                    "display": "Parameter 3"
                },
                {
                    "name": "param4",
                    "display": "Parameter 4"
                }
            ]
        }
    ],
    "schedules": [
        {
            "name": "monthly",
            "display": "Monthly"
        },
        {
            "name": "daily",
            "display": "Daily"
        }
    ]

}

(If schedules are not specified, a default schedules list will be used).

  • The Airflow DAGs Creator - a Python file that reads the pipeline configuration and creates your Airflow DAGs. Sample code:
import datetime
import logging
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils import dates
from etl_server.models import Models

etl_models = Models()

default_args = {
    'owner': 'Airflow',
    'depends_on_past': False,
    'start_date': dates.days_ago(1),
}

for pipeline in etl_models.all_pipelines():
  # pipeline looks like this:
  # {
  #   "id": "<identifier>",
  #   "name": "<English Name of Pipeline>",
  #   "kind": "<kind-name>",
  #   "schedule": "<schedule>",
  #   "params": {
  #      "field1": "value1",
  #      .. other fields, based on kind's fields in configuration
  #   }
  # }
    dag_id = pipeline['id']
    logging.info('Initializing DAG %s', dag_id)
    dag = DAG(dag_id, default_args=default_args, schedule_interval=datetime.timedelta(days=1))
    task = BashOperator(task_id=dag_id,
                        bash_command='echo "%s"; sleep 10 ; echo done' % pipeline['name'],
                        dag=dag)
    globals()[dag_id] = dag
  1. Use a docker-compose setup to run the server, an example docker-compose.yaml file:
version: "3"

services:

  db:
    image: postgres:12
    environment:
      POSTGRES_PASSWORD: postgres
      POSTGRES_USER: postgres
      POSTGRES_DB: etls
    expose:
      - 5432
    volumes: 
      - /var/lib/postgresql/data

  server:
    build: .
    image: akariv/airflow-config-ui
    environment:
      DATABASE_URL: postgresql://postgres:postgres@db/etls
      AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql://postgres:postgres@db/etls
    expose:
      - 5000
    ports:
      - 5000:5000
    depends_on: 
      - db
    volumes: 
      - /path/to/local/dags/folder/:/app/dags

After running (docker-compose up -d server), open your browser at http://localhost:5000 to see the web UI.

Another option is to create a new Docker image which inherits from akariv/airflow-config-ui and replaces the contents of /app/dags/ with the configuration.json file and your DAG Python files.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

etl-server-0.0.10.tar.gz (21.6 kB view details)

Uploaded Source

Built Distribution

etl_server-0.0.10-py3-none-any.whl (27.9 kB view details)

Uploaded Python 3

File details

Details for the file etl-server-0.0.10.tar.gz.

File metadata

  • Download URL: etl-server-0.0.10.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.8

File hashes

Hashes for etl-server-0.0.10.tar.gz
Algorithm Hash digest
SHA256 85e7552b69108732a32cae7a4db7dc212838a9d71db001924287295dccd7d71c
MD5 372b7fced90431857e6bef35cd77aa7a
BLAKE2b-256 ad1e6946ebd1a281bde5ebfffa60b60cc9c7298c92d675f8926ff4574b7147a2

See more details on using hashes here.

File details

Details for the file etl_server-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: etl_server-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 27.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.8

File hashes

Hashes for etl_server-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 de07502d29b9a24e8ac564a72baf9ca704a2246e0733613e900455b3ff4638ad
MD5 7273e62afd2ed87deb0ccd16ed8b0eb2
BLAKE2b-256 cd052d7748cf5f27be3561c1d111a0e2a403563134a463276d23e2c32c09e001

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page