Skip to main content

{{ DESCRIPTION }}

Project description

Configurable Airflow UI

This library provides a wrapper around airflow, providing a means to add / remove DAGs (Pipelines) via a web-ui based on a configuration defining the Pipeline 'kinds' and the parameters each kind requires.

Pipeline Dashboard

Pipeline Dashboard

Edit/New Pipeline

Edit/New Pipeline

Pipeline Status

Pipeline Status

Quickstart

  1. Create a folder containing:
  • A configuration.yaml file with the details on your pipeline kinds, e.g.
{
    "kinds": [
        {
            "name": "kind1",
            "display": "Kind 1",
            "fields": [
                {
                    "name": "param1",
                    "display": "Parameter 1"
                },
                {
                    "name": "param2",
                    "display": "Parameter 2"
                }
            ]
        },
        {
            "name": "kind2",
            "display": "Kind 2",
            "fields": [
                {
                    "name": "param3",
                    "display": "Parameter 3"
                },
                {
                    "name": "param4",
                    "display": "Parameter 4"
                }
            ]
        }
    ],
    "schedules": [
        {
            "name": "monthly",
            "display": "Monthly"
        },
        {
            "name": "daily",
            "display": "Daily"
        }
    ]

}

(If schedules are not specified, a default schedules list will be used).

  • The Airflow DAGs Creator - a Python file that reads the pipeline configuration and creates your Airflow DAGs. Sample code:
import datetime
import logging
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils import dates
from etl_server.models import Models

etl_models = Models()

default_args = {
    'owner': 'Airflow',
    'depends_on_past': False,
    'start_date': dates.days_ago(1),
}

for pipeline in etl_models.all_pipelines():
  # pipeline looks like this:
  # {
  #   "id": "<identifier>",
  #   "name": "<English Name of Pipeline>",
  #   "kind": "<kind-name>",
  #   "schedule": "<schedule>",
  #   "params": {
  #      "field1": "value1",
  #      .. other fields, based on kind's fields in configuration
  #   }
  # }
    dag_id = pipeline['id']
    logging.info('Initializing DAG %s', dag_id)
    dag = DAG(dag_id, default_args=default_args, schedule_interval=datetime.timedelta(days=1))
    task = BashOperator(task_id=dag_id,
                        bash_command='echo "%s"; sleep 10 ; echo done' % pipeline['name'],
                        dag=dag)
    globals()[dag_id] = dag
  1. Use a docker-compose setup to run the server, an example docker-compose.yaml file:
version: "3"

services:

  db:
    image: postgres:12
    environment:
      POSTGRES_PASSWORD: postgres
      POSTGRES_USER: postgres
      POSTGRES_DB: etls
    expose:
      - 5432
    volumes: 
      - /var/lib/postgresql/data

  server:
    build: .
    image: akariv/airflow-config-ui
    environment:
      DATABASE_URL: postgresql://postgres:postgres@db/etls
      AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql://postgres:postgres@db/etls
    expose:
      - 5000
    ports:
      - 5000:5000
    depends_on: 
      - db
    volumes: 
      - /path/to/local/dags/folder/:/app/dags

After running (docker-compose up -d server), open your browser at http://localhost:5000 to see the web UI.

Another option is to create a new Docker image which inherits from akariv/airflow-config-ui and replaces the contents of /app/dags/ with the configuration.json file and your DAG Python files.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

etl-server-0.0.8.tar.gz (3.3 MB view details)

Uploaded Source

Built Distribution

etl_server-0.0.8-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file etl-server-0.0.8.tar.gz.

File metadata

  • Download URL: etl-server-0.0.8.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.8

File hashes

Hashes for etl-server-0.0.8.tar.gz
Algorithm Hash digest
SHA256 d1042ec4aaed8d45916c580cf9e2a6c08de142de3da86db3aac08d0760810c8d
MD5 7b53a442dcbad4dfcbf7bf577b09ee9a
BLAKE2b-256 9a33ff4be228cd85e8c61886e3defd4e5685e9b5481917c8c5bb942159ef4248

See more details on using hashes here.

File details

Details for the file etl_server-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: etl_server-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.8

File hashes

Hashes for etl_server-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 118dcce06e1f9d818e30d222ff86b5541a541b5cc5a4a5fe75c376b9d97a7ff3
MD5 9306339d786bfe2c8b749b0d53432a12
BLAKE2b-256 89a09a761a9ae784a314f9c1b3ad4c97b6b50298b3d952c089828126d8f0a23c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page