Skip to main content

Library that provide a Solr based vector store for Langchain

Project description

Eurelis-Langchain-SolR-VectorStore

Python : 11 Code style : black Linting : pylint

This library allows to use a Solr based vector store with the python version of LangChain

Usage

This library assume you already have a running Solr instance with a configured dense vector field

<fieldType name="knn_vector" class="solr.DenseVectorField" vectorDimension="768" similarityFunction="euclidean"/>
<field name="vector" type="knn_vector" indexed="true" stored="true"/>

Be sure to set a vectorDimension value corresponding to what yor embeddings model provide.

from langchain.embeddings import HuggingFaceEmbeddings
from eurelis_langchain_solr_vectorstore import Solr

embeddings = HuggingFaceEmbeddings()  # you are free to use any embeddings method allowed by langchain

vector_store = Solr(embeddings)  # with default core configuration

You can also specify data about the solr instance and core to use:

vector_store = Solr(embeddings, core_kwargs={
    'page_content_field': 'text_t',  # field containing the text content
    'vector_field': 'vector',        # field containing the embeddings of the text content
    'core_name': 'langchain',        # core name
    'url_base': 'http://localhost:8983/solr', # base url to access solr
    'query_handler': 'select', # handler to use to query solr
    'update_handler': 'update', # update handler for solr
    'metadata_fields': [] # additional solr fields to consider as metadata, ie ['id']
})  # with custom default core configuration

In the code above you have both the allowed core arguments and the default value.

Metadata

The Solr based vector store also supports storing and filtering on metadata.

Metadata are mapped into Solr using the following convention: metadata_{key}_{type} with key being the original metadata key, and type is automatically inferred as:

  • i for integer fields
  • d for float fields
  • s for string fields
  • b for boolean fields

The vector_search method take an optional where param expecting a dict:

  • dict item key: base name of a metadata field
  • dict item value: value expected in the metadata field

Example using the vector store as a retriever:

retriever = vector_store.as_retriever()

Example adding filter instructions to the retriever

retriever = vector_store.as_retriever(search_kwargs={'filter': {'language': 'en', 'year': 2000}})

Docker

A docker compose file is present in the etc/docker folder, use it with

docker compose up -d

To launch a solr instance with a core named langchain and a 'vector' field with 768 dimensions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file eurelis_langchain_solr_vectorstore-0.0.3.tar.gz.

File metadata

File hashes

Hashes for eurelis_langchain_solr_vectorstore-0.0.3.tar.gz
Algorithm Hash digest
SHA256 7a39888af6949630ff50f915b47e3b232fcdc0f22573dbb06846c8d9a1264517
MD5 8014bfded961779d99ae269aba6a3646
BLAKE2b-256 5e4cf4c77cca0a49bd89809c93b096cfbd3d80fb7473c5598805c6f0961c85dd

See more details on using hashes here.

File details

Details for the file eurelis_langchain_solr_vectorstore-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for eurelis_langchain_solr_vectorstore-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 4e6afad2cecfb29ccc2d85aedc2bb0e0f98fe86402d0817e557960721b484a71
MD5 43423adfd3c4ef3904b78d78b64de006
BLAKE2b-256 61d9c16fd791a6420155618e15eeabce968e1d26ab4f3243b282e700e9c1079a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page