Skip to main content

Event system

Project description

PyPi Documentation

About eventkit

Send events between loosely coupled components, compose all kinds of data pipelines.

See the examples and the introduction notebook to get a true feel for the possibilities.

Installation

pip3 install eventkit

Python version 3.6 or higher is required.

Examples

Create an event and connect two listeners

import eventkit as ev

def f(a, b):
    print(a * b)

def g(a, b):
    print(a / b)

event = ev.Event()
event += f
event += g
event.emit(10, 5)

Create a simple pipeline

import eventkit as ev

event = (
    ev.Sequence('abcde')
    .map(str.upper)
    .enumerate()
)

print(event.run())  # in Jupyter: await event.list()

Output:

[(0, 'A'), (1, 'B'), (2, 'C'), (3, 'D'), (4, 'E')]

Create a pipeline to get a running average and standard deviation

import random
import eventkit as ev

source = ev.Range(1000).map(lambda i: random.gauss(0, 1))

event = source.array(500)[ev.ArrayMean, ev.ArrayStd].zip()

print(event.last().run())  # in Jupyter: await event.last()

Output:

[(0.00790957852672618, 1.0345673260655333)]

Combine async iterators together

import asyncio
import eventkit as ev

async def ait(r):
    for i in r:
        await asyncio.sleep(0.1)
        yield i

async def main():
    async for t in ev.Zip(ait('XYZ'), ait('123')):
        print(t)

asyncio.get_event_loop().run_until_complete(main())  # in Jupyter: await main()

Output:

('X', '1')
('Y', '2')
('Z', '3')

Realtime video analysis pipeline

self.video = VideoStream(conf.CAM_ID)
scene = self.video | FaceTracker | SceneAnalyzer
lastScene = scene.aiter(skip_to_last=True)
async for frame, faces, persons in lastScene:
    ...

Full source code

Distributed computing

The distex library provides a poolmap extension method to put multiple cores or machines to use:

from distex import Pool
import eventkit as ev
import bz2

pool = Pool()
# await pool  # un-comment in Jupyter
data = [b'A' * 1000000] * 1000

pipe = ev.Sequence(data).poolmap(pool, bz2.compress).map(len).mean().last()

print(pipe.run())  # in Jupyter: print(await pipe)
pool.shutdown()

Inspired by:

Documentation

The complete API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eventkit-0.8.0.tar.gz (15.8 kB view details)

Uploaded Source

Built Distribution

eventkit-0.8.0-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file eventkit-0.8.0.tar.gz.

File metadata

  • Download URL: eventkit-0.8.0.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for eventkit-0.8.0.tar.gz
Algorithm Hash digest
SHA256 68a14aecd8164984efb3d82d32026d675378a972afa46f18e4aed6e48204d46c
MD5 e14fce5cdb34a459fa6df4c6d2454162
BLAKE2b-256 b5faa9b2b6fe31dba8365a75ce5087f26ff84ce45ade85b3ed8ffb4b0f35a663

See more details on using hashes here.

File details

Details for the file eventkit-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: eventkit-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for eventkit-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 19fea56ed4e735ae07b9bedf76ad36b6cba9469d05d52d480868972123574167
MD5 a156c000e8ed00da35f2c5ef32d04cfe
BLAKE2b-256 b450897aa342a6642576807b8c341356728a9351bc88096307793d2c154842ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page