Skip to main content

Event-driven data pipelines

Project description

Travis build PyPi Documentation

Introduction

The primary use cases of eventkit are

  • to send events between loosely coupled components;

  • to compose all kinds of event-driven data pipelines.

The interface is kept as Pythonic as possible, with familiar names from Python and its libraries where possible. For scheduling asyncio is used and there is seamless integration with it.

See the examples and the introduction notebook to get a true feel for the possibilities.

Installation

pip3 install eventkit

Python version 3.6 or higher is required.

Examples

Create an event and connect two listeners

import eventkit as ev

def f(a, b):
    print(a * b)

def g(a, b):
    print(a / b)

event = ev.Event()
event += f
event += g
event.emit(10, 5)

Create a simple pipeline

import eventkit as ev

event = (
    ev.Sequence('abcde')
    .map(str.upper)
    .enumerate()
)

print(event.run())  # in Jupyter: await event.list()

Output:

[(0, 'A'), (1, 'B'), (2, 'C'), (3, 'D'), (4, 'E')]

Create a pipeline to get a running average and standard deviation

import random
import eventkit as ev

source = ev.Range(1000).map(lambda i: random.gauss(0, 1))

event = source.array(500)[ev.ArrayMean, ev.ArrayStd].zip()

print(event.last().run())  # in Jupyter: await event.last()

Output:

[(0.00790957852672618, 1.0345673260655333)]

Combine async iterators together

import asyncio
import eventkit as ev

async def ait(r):
    for i in r:
        await asyncio.sleep(0.1)
        yield i

async def main():
    async for t in ev.Zip(ait('XYZ'), ait('123')):
        print(t)

asyncio.get_event_loop().run_until_complete(main())  # in Jupyter: await main()

Output:

('X', '1')
('Y', '2')
('Z', '3')

Real-time video analysis pipeline

self.video = VideoStream(conf.CAM_ID)
scene = self.video | FaceTracker | SceneAnalyzer
lastScene = scene.aiter(skip_to_last=True)
async for frame, persons in lastScene:
    ...

Full source code

Distributed computing

The distex library provides a poolmap extension method to put multiple cores or machines to use:

from distex import Pool
import eventkit as ev
import bz2

pool = Pool()
# await pool  # un-comment in Jupyter
data = [b'A' * 1000000] * 1000

pipe = ev.Sequence(data).poolmap(pool, bz2.compress).map(len).mean().last()

print(pipe.run())  # in Jupyter: print(await pipe)
pool.shutdown()

Inspired by:

Documentation

The complete API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eventkit-0.8.9.tar.gz (27.2 kB view details)

Uploaded Source

Built Distribution

eventkit-0.8.9-py3-none-any.whl (31.3 kB view details)

Uploaded Python 3

File details

Details for the file eventkit-0.8.9.tar.gz.

File metadata

  • Download URL: eventkit-0.8.9.tar.gz
  • Upload date:
  • Size: 27.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.9.7

File hashes

Hashes for eventkit-0.8.9.tar.gz
Algorithm Hash digest
SHA256 ea0ee97903d0713ded98aacdba277cea07d01af86c2480210df7802f64e5879e
MD5 25c5cab065100db9ed0f352e75608f94
BLAKE2b-256 4e7ed9e9cb8e131e7fd24bb755057509106a7a05050aec560d84e47241f34c0c

See more details on using hashes here.

File details

Details for the file eventkit-0.8.9-py3-none-any.whl.

File metadata

  • Download URL: eventkit-0.8.9-py3-none-any.whl
  • Upload date:
  • Size: 31.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.9.7

File hashes

Hashes for eventkit-0.8.9-py3-none-any.whl
Algorithm Hash digest
SHA256 9d3886578b40fe09607d3a09be44a13c1720f9a869b181f0d971155fc32ca74c
MD5 f6719b232715230708ed11c5e8f15787
BLAKE2b-256 a95c21913acec7e06aa104cb2668646a5ef2c3871250797a223c1a2a7939a36b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page