Skip to main content

Event-driven data pipelines

Project description

Build PyPi Documentation

Introduction

The primary use cases of eventkit are

  • to send events between loosely coupled components;

  • to compose all kinds of event-driven data pipelines.

The interface is kept as Pythonic as possible, with familiar names from Python and its libraries where possible. For scheduling asyncio is used and there is seamless integration with it.

See the examples and the introduction notebook to get a true feel for the possibilities.

Installation

pip3 install eventkit

Python version 3.6 or higher is required.

Examples

Create an event and connect two listeners

import eventkit as ev

def f(a, b):
    print(a * b)

def g(a, b):
    print(a / b)

event = ev.Event()
event += f
event += g
event.emit(10, 5)

Create a simple pipeline

import eventkit as ev

event = (
    ev.Sequence('abcde')
    .map(str.upper)
    .enumerate()
)

print(event.run())  # in Jupyter: await event.list()

Output:

[(0, 'A'), (1, 'B'), (2, 'C'), (3, 'D'), (4, 'E')]

Create a pipeline to get a running average and standard deviation

import random
import eventkit as ev

source = ev.Range(1000).map(lambda i: random.gauss(0, 1))

event = source.array(500)[ev.ArrayMean, ev.ArrayStd].zip()

print(event.last().run())  # in Jupyter: await event.last()

Output:

[(0.00790957852672618, 1.0345673260655333)]

Combine async iterators together

import asyncio
import eventkit as ev

async def ait(r):
    for i in r:
        await asyncio.sleep(0.1)
        yield i

async def main():
    async for t in ev.Zip(ait('XYZ'), ait('123')):
        print(t)

asyncio.get_event_loop().run_until_complete(main())  # in Jupyter: await main()

Output:

('X', '1')
('Y', '2')
('Z', '3')

Real-time video analysis pipeline

self.video = VideoStream(conf.CAM_ID)
scene = self.video | FaceTracker | SceneAnalyzer
lastScene = scene.aiter(skip_to_last=True)
async for frame, persons in lastScene:
    ...

Full source code

Distributed computing

The distex library provides a poolmap extension method to put multiple cores or machines to use:

from distex import Pool
import eventkit as ev
import bz2

pool = Pool()
# await pool  # un-comment in Jupyter
data = [b'A' * 1000000] * 1000

pipe = ev.Sequence(data).poolmap(pool, bz2.compress).map(len).mean().last()

print(pipe.run())  # in Jupyter: print(await pipe)
pool.shutdown()

Inspired by:

Documentation

The complete API documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eventkit-1.0.1.tar.gz (28.1 kB view details)

Uploaded Source

Built Distribution

eventkit-1.0.1-py3-none-any.whl (31.7 kB view details)

Uploaded Python 3

File details

Details for the file eventkit-1.0.1.tar.gz.

File metadata

  • Download URL: eventkit-1.0.1.tar.gz
  • Upload date:
  • Size: 28.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for eventkit-1.0.1.tar.gz
Algorithm Hash digest
SHA256 56b99a6205f61cd995aa5e0036e37bd61f052f7d32560e60b6fe45e319a7ef3a
MD5 1e2b3de0543a94654dab358cf4deafdb
BLAKE2b-256 ab645c7938c6d6c75264aafb0225147fbca74ff2cf3f9c856576e7f9167d00d4

See more details on using hashes here.

File details

Details for the file eventkit-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: eventkit-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 31.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for eventkit-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6060a6aa04d5c5d20f2e55b7c17e2a22e8d31f88f2c2791d60eab3301aa040da
MD5 2e30f85822f98c739945b3e15b9db85f
BLAKE2b-256 8d84d73cb848205a655a9a4761616039d2612fb7c52d5a9c90cf43c3dd869f44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page