Skip to main content

Differentiable (binned) likelihoods in JAX.

Project description

logo

evermore

Documentation Status Actions Status PyPI version PyPI platforms

Differentiable (binned) likelihoods in JAX.

Installation

python -m pip install evermore

From source:

git clone https://github.com/pfackeldey/evermore
cd evermore
python -m pip install .

Example - Model and Loss Definition

See more in examples/

evermore in a nutshell:

import equinox as eqx
import jax
import jax.numpy as jnp
from jaxtyping import Array

import evermore as evm

jax.config.update("jax_enable_x64", True)


# define a simple model with two processes and two parameters
class Model(eqx.Module):
    mu: evm.FreeFloating
    syst: evm.NormalConstrained

    def __call__(self, hists: dict[str, Array]) -> Array:
        mu_modifier = self.mu.unconstrained()
        syst_modifier = self.syst.log_normal(up=jnp.array([1.1]), down=jnp.array([0.9]))
        return mu_modifier(hists["signal"]) + syst_modifier(hists["bkg"])


nll = evm.loss.PoissonNLL()


def loss(model: Model, hists: dict[str, Array], observation: Array) -> Array:
    expectation = model(hists)
    # Poisson NLL of the expectation and observation
    log_likelihood = nll(expectation, observation)
    # Add parameter constraints from logpdfs
    constraints = evm.loss.get_log_probs(model)
    log_likelihood += evm.util.sum_leaves(constraints)
    return -jnp.sum(log_likelihood)


# setup model and data
hists = {"signal": jnp.array([3]), "bkg": jnp.array([10])}
observation = jnp.array([15])
model = Model(mu=evm.FreeFloating(), syst=evm.NormalConstrained())

# negative log-likelihood
loss_val = loss(model, hists, observation)
# gradients of negative log-likelihood w.r.t. model parameters
grads = eqx.filter_grad(loss)(model, hists, observation)
print(f"{grads.mu.value=}, {grads.syst.value=}")
# -> grads.mu.value=Array([-0.46153846]), grads.syst.value=Array([-0.15436207])

Contributing

See CONTRIBUTING.md for instructions on how to contribute.

License

Distributed under the terms of the BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

evermore-0.2.5.tar.gz (130.7 kB view details)

Uploaded Source

Built Distribution

evermore-0.2.5-py3-none-any.whl (16.1 kB view details)

Uploaded Python 3

File details

Details for the file evermore-0.2.5.tar.gz.

File metadata

  • Download URL: evermore-0.2.5.tar.gz
  • Upload date:
  • Size: 130.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for evermore-0.2.5.tar.gz
Algorithm Hash digest
SHA256 9b4225f3adaff0987c02d0bff876e7e7c7003d28f4d3c140dbb2a384ee13ec51
MD5 c0a4cc640515ef294784c0e4c42f58c9
BLAKE2b-256 7211ee46bdcc2389718656fae79567890cf8ef236d503c67eac9920ff8192918

See more details on using hashes here.

File details

Details for the file evermore-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: evermore-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 16.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for evermore-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 9fbb484bd70fc623647abf12f4949741e59998a1059da503ae91e6831614e067
MD5 5d990cacd0512d9e080d2fee7deab808
BLAKE2b-256 d4ec5d287ba9757cf9fa290ba190a661997e58e2e7b7f5180e980a22f3e0e4ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page