Skip to main content

GPlib extension to learn the kernel function.

Project description

EvoCov

GPlib extension to learn the kernel function.

Setup evocov

  • Create and activate virtualenv (for python2) or venv (for python3)
  # for python3
  python3 -m venv .env
  # or for python2
  python2 -m virtualenv .env

  source .env/bin/activate
  • Upgrade pip
  python -m pip install --upgrade pip
  • Install EvoCov package
  python -m pip install evocov

Use EvoCov

  • Import EvoCov and GPlib to use it in your python script.
  import gplib
  import evocov
  • Configure the fitting method.
  lml = gplib.me.LML()
  bic = gplib.me.BIC()

  fitting_method = evocov.fit.EvoCov(
      obj_fun=bic.fold_measure,
      max_fun_call=25000,
      nested_fit_method=gplib.fit.MultiStart(
          obj_fun=lml.fold_measure,
          max_fun_call=250,
          nested_fit_method=gplib.fit.LocalSearch(
              obj_fun=lml.fold_measure,
              method="Powell",
              max_fun_call=100
          )
      )
  )
  • Initialize the GP with None covariance function.
  gp = gplib.GP(
      mean_function=gplib.mea.Fixed(),
      covariance_function=fitting_method.get_random_kernel()
  )
  • Generate some random data.
  import numpy as np
  data = {
    'X': np.arange(3, 8, 1.)[:, None],
    'Y': np.random.uniform(0, 2, 5)[:, None]
  }
  • Fit the kernel and the hyperparameters to the training set.
  validation = gplib.dm.Full()

  log = fitting_method.fit(gp, validation.get_folds(
      data
  ))
  • Finally plot the posterior GP.
  posterior_gp = gp.get_posterior(data)
  gplib.plot.gp_1d(posterior_gp, data, n_samples=10)
  • There are more examples in examples/ directory. Check them out!

Develop EvoCov

  • Update API documentation
  source ./.env/bin/activate
  pip install Sphinx
  cd docs/
  sphinx-apidoc -f -o ./ ../evocov

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

evocov-0.1.0.tar.gz (27.5 kB view details)

Uploaded Source

Built Distribution

evocov-0.1.0-py2.py3-none-any.whl (39.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file evocov-0.1.0.tar.gz.

File metadata

  • Download URL: evocov-0.1.0.tar.gz
  • Upload date:
  • Size: 27.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for evocov-0.1.0.tar.gz
Algorithm Hash digest
SHA256 17c36e2eda9c527587e8f4b96db381a57699c23983f16a4009dee68b26a72ea2
MD5 e7d9f113482c0cba22870208ad5cdc6e
BLAKE2b-256 a446a77f774d7589a7d92aaf8873d0161b5f39221846fe5979553570138a0069

See more details on using hashes here.

File details

Details for the file evocov-0.1.0-py2.py3-none-any.whl.

File metadata

  • Download URL: evocov-0.1.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 39.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for evocov-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 8fc66e6e7b970cb5c340a2adf3be44dee62beeaa3239dc471d32c91cc043165a
MD5 c4dafa467f6f61199357c87af869e575
BLAKE2b-256 73c805ed66fcc3667c9072afbd8b481235d69514154b1712f67ef956cba382a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page