GPlib extension to learn the kernel function.
Project description
EvoCov
GPlib extension to learn the kernel function.
Setup evocov
- Create and activate virtualenv (for python2) or venv (for python3)
# for python3
python3 -m venv .env
# or for python2
python2 -m virtualenv .env
source .env/bin/activate
- Upgrade pip
python -m pip install --upgrade pip
- Install EvoCov package
python -m pip install evocov
Use EvoCov
- Import EvoCov and GPlib to use it in your python script.
import gplib
import evocov
- Configure the fitting method.
lml = gplib.me.LML()
bic = gplib.me.BIC()
fitting_method = evocov.fit.EvoCov(
obj_fun=bic.fold_measure,
max_fun_call=25000,
nested_fit_method=gplib.fit.MultiStart(
obj_fun=lml.fold_measure,
max_fun_call=250,
nested_fit_method=gplib.fit.LocalSearch(
obj_fun=lml.fold_measure,
method="Powell",
max_fun_call=100
)
)
)
- Initialize the GP with None covariance function.
gp = gplib.GP(
mean_function=gplib.mea.Fixed(),
covariance_function=fitting_method.get_random_kernel()
)
- Generate some random data.
import numpy as np
data = {
'X': np.arange(3, 8, 1.)[:, None],
'Y': np.random.uniform(0, 2, 5)[:, None]
}
- Fit the kernel and the hyperparameters to the training set.
validation = gplib.dm.Full()
log = fitting_method.fit(gp, validation.get_folds(
data
))
- Finally plot the posterior GP.
posterior_gp = gp.get_posterior(data)
gplib.plot.gp_1d(posterior_gp, data, n_samples=10)
- There are more examples in examples/ directory. Check them out!
Develop EvoCov
- Update API documentation
source ./.env/bin/activate
pip install Sphinx
cd docs/
sphinx-apidoc -f -o ./ ../evocov
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
evocov-0.1.0.tar.gz
(27.5 kB
view details)
Built Distribution
File details
Details for the file evocov-0.1.0.tar.gz
.
File metadata
- Download URL: evocov-0.1.0.tar.gz
- Upload date:
- Size: 27.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17c36e2eda9c527587e8f4b96db381a57699c23983f16a4009dee68b26a72ea2 |
|
MD5 | e7d9f113482c0cba22870208ad5cdc6e |
|
BLAKE2b-256 | a446a77f774d7589a7d92aaf8873d0161b5f39221846fe5979553570138a0069 |
File details
Details for the file evocov-0.1.0-py2.py3-none-any.whl
.
File metadata
- Download URL: evocov-0.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 39.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8fc66e6e7b970cb5c340a2adf3be44dee62beeaa3239dc471d32c91cc043165a |
|
MD5 | c4dafa467f6f61199357c87af869e575 |
|
BLAKE2b-256 | 73c805ed66fcc3667c9072afbd8b481235d69514154b1712f67ef956cba382a4 |