Inversion of dispersion curves using Evolutionary Algorithms
Project description
evodcinv is a Python library to invert surface wave dispersion data (e.g., phase velocity dispersion curves) for an isotropic layered velocity model using Evolutionary Algorithms. It relies on stochopy for the evolutionary optimizers while forward modeling is heavy-lifted by disba.
Features
Invertible data curves:
Love-wave phase and/or group velocity dispersion curves,
Rayleigh-wave phase and/or group velocity dispersion curves,
Rayleigh-wave ellipticity (experimental).
Installation
The recommended way to install evodcinv and all its dependencies is through the Python Package Index:
pip install evodcinv --user
Otherwise, clone and extract the package, then run from the package location:
pip install . --user
To test the integrity of the installed package, check out this repository and run:
pytest
Documentation
Refer to the online documentation for detailed description of the API and examples.
Alternatively, the documentation can be built using Sphinx:
pip install -r doc/requirements.txt
sphinx-build -b html doc/source doc/build
Usage
The following example inverts a Rayleigh-wave phase velocity dispersion curve (fundamental mode).
from evodcinv import EarthModel, Layer, Curve
# Initialize model
model = EarthModel()
# Build model search boundaries from top to bottom
# First argument is the bounds of layer's thickness [km]
# Second argument is the bounds of layer's S-wave velocity [km/s]
model.add(Layer([0.001, 0.1], [0.1, 3.0]))
model.add(Layer([0.001, 0.1], [0.1, 3.0]))
# Configure model
model.configure(
optimizer="cpso", # Evolutionary algorithm
misfit="rmse", # Misfit function type
optimizer_args={
"popsize": 10, # Population size
"maxiter": 100, # Number of iterations
"workers": -1, # Number of cores
"seed": 0,
},
)
# Define the dispersion curves to invert
# period and velocity are assumed to be data arrays
curves = [Curve(period, velocity, 0, "rayleigh", "phase")]
# Run inversion
res = model.invert(curves)
print(res)
Expected output:
--------------------------------------------------------------------------------
Best model out of 501 models (1 run)
Velocity model Model parameters
---------------------------------------- ------------------------------
d vp vs rho d vs nu
[km] [km/s] [km/s] [g/cm3] [km] [km/s] [-]
---------------------------------------- ------------------------------
0.0298 0.5033 0.2055 2.0000 0.0298 0.2055 0.4000
1.0000 2.0586 0.9935 2.0000 - 0.9935 0.3482
---------------------------------------- ------------------------------
Number of layers: 2
Number of parameters: 5
Best model misfit: 0.0038
--------------------------------------------------------------------------------
Contributing
Please refer to the Contributing Guidelines to see how you can help. This project is released with a Code of Conduct which you agree to abide by when contributing.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file evodcinv-2.2.2.tar.gz
.
File metadata
- Download URL: evodcinv-2.2.2.tar.gz
- Upload date:
- Size: 19.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74f0798c774f5d4e248552e2b6c36d2f9b1728a647e8ee0f613aed873289090d |
|
MD5 | 276860c433e501b9faeb4a67e206f88c |
|
BLAKE2b-256 | 8d633136db1e88901d8c1f6606114a42844cfa0279e0d76448e9fd0bde79ac17 |
File details
Details for the file evodcinv-2.2.2-py3-none-any.whl
.
File metadata
- Download URL: evodcinv-2.2.2-py3-none-any.whl
- Upload date:
- Size: 21.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d3702a05d32a7b65331a685b1dafc4203089659dcccffde361a3274ee7baec4 |
|
MD5 | 1171b902321d6dfa862ffab38020f52e |
|
BLAKE2b-256 | 511556df0a7f9075dc5df3350b8519f9e4cb16ecd7a094895d3e2ea9529d92a8 |