Skip to main content

Evolution Gym: A benchmark for developing and evaluating soft robot co-design algorithms.

Project description

Evolution Gym

Build Test

Evolution Gym is a large-scale benchmark for co-optimizing the design and control of soft robots. It provides a lightweight soft-body simulator wrapped with a gym-like interface for developing learning algorithms. EvoGym also includes a suite of 32 locomotion and manipulation tasks, detailed on our website. Task suite evaluations are described in our NeurIPS 2021 paper.

[!NOTE] EvoGym has been recently updated! TLDR: requirements have been modernized (gym/gymnasium, numpy, etc.), and the library is now pip-installable.

teaser

Installation

EvoGym supports python 3.7 to 3.10 on most operating systems:

pip install evogym --upgrade

On Linux install the following packages (or equivalent):

sudo apt-get install xorg-dev libglu1-mesa-dev

From Source

If your platform is not supported, you may alternatively build from source:

Requirements

Clone the repo and submodules:

git clone --recurse-submodules https://github.com/EvolutionGym/evogym.git

On Linux only:

sudo apt-get install xorg-dev libglu1-mesa-dev

Finally, to install evogym, run the following in the environment of your choice:

pip install -e .

Test Installation

If you have the repo cloned, cd to the examples folder and run the following script:

python gym_test.py

Alternatively, you can run the following snippet:

import gymnasium as gym
import evogym.envs
from evogym import sample_robot


if __name__ == '__main__':

    body, connections = sample_robot((5,5))
    env = gym.make('Walker-v0', body=body, render_mode='human')
    env.reset()

    while True:
        action = env.action_space.sample()
        ob, reward, terminated, truncated, info = env.step(action)

        if terminated or truncated:
            env.reset()

    env.close()

This script creates a random 5x5 robot in the Walking-v0 environment. The robot is taking random actions. A window should open with a visualization of the environment -- kill the process from the terminal to close it.

Known Issues

Linux and Conda

Error message: libGL error: MESA-LOADER: failed to open iris: /usr/lib/dri/iris_dri.so

Fix: conda install -c conda-forge libstdcxx-ng

Usage

In addition to the resources below, you can find API documentation on our website.

Tutorials

You can find tutorials for getting started with the codebase on our website. Completed code from all tutorials is also available in the tutorials folder, along with a README. Tutorials are included for:

Examples

To run co-design and control optimization experiments in EvoGym, please see the examples folder and its README. Included are scripts for:

  • Running PPO
  • Running a Genetic Algorithm
  • Running Bayesian Optimization
  • Running CPPN-NEAT
  • Visualizing results
  • Saving results as gifs

Make sure you clone the repo with submodules:

git clone --recurse-submodules https://github.com/EvolutionGym/evogym.git

Install the necessary python requirements:

pip install -r requirements.txt

Design Tool

The Design Tool provides a gui for creating Evolution Gym environments. Please see this repo.

design-tool

Headless Mode

EvoGym runs in headless mode by default, and avoids initializing rendering libraries until necessary. If using a server without rendering capabilities, ensure that:

# Envs are created with render_mode=None (None by default)
env = gym.make('Walker-v0', body=body, render_mode=None)
# If using the low-level api, do not call EvoViewer.render()
world = EvoWorld.from_json(os.path.join('world_data', 'simple_environment.json'))
sim = EvoSim(world)
viewer = EvoViewer(sim)
viewer.render('img') # <-- Rendering libraries are initialized; do not call this

Dev

Install the repo with submodules:

git clone --recurse-submodules https://github.com/EvolutionGym/evogym.git

Install the necessary python requirements. You will additionally need to install the dev requirements:

pip install -r requirements.txt
pip install -r requirements-dev.txt

Run Tests

From within the tests directory run the full test suite:

cd tests
pytest -s -v -n auto

Or the lite test suite:

cd tests
pytest -s -v -n auto -m lite

Citation

If you find our repository helpful to your research, please cite our paper:

@article{bhatia2021evolution,
  title={Evolution gym: A large-scale benchmark for evolving soft robots},
  author={Bhatia, Jagdeep and Jackson, Holly and Tian, Yunsheng and Xu, Jie and Matusik, Wojciech},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

evogym-2.0.0.tar.gz (3.3 MB view details)

Uploaded Source

Built Distributions

evogym-2.0.0-pp310-pypy310_pp73-win_amd64.whl (4.4 MB view details)

Uploaded PyPy Windows x86-64

evogym-2.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

evogym-2.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (4.5 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

evogym-2.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (4.7 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

evogym-2.0.0-pp39-pypy39_pp73-win_amd64.whl (4.4 MB view details)

Uploaded PyPy Windows x86-64

evogym-2.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

evogym-2.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (4.5 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

evogym-2.0.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (4.7 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

evogym-2.0.0-pp38-pypy38_pp73-win_amd64.whl (4.4 MB view details)

Uploaded PyPy Windows x86-64

evogym-2.0.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

evogym-2.0.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (4.5 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

evogym-2.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

evogym-2.0.0-pp37-pypy37_pp73-win_amd64.whl (4.4 MB view details)

Uploaded PyPy Windows x86-64

evogym-2.0.0-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

evogym-2.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

evogym-2.0.0-cp310-cp310-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

evogym-2.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

evogym-2.0.0-cp310-cp310-macosx_11_0_arm64.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

evogym-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

evogym-2.0.0-cp39-cp39-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

evogym-2.0.0-cp39-cp39-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

evogym-2.0.0-cp39-cp39-macosx_11_0_arm64.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

evogym-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

evogym-2.0.0-cp38-cp38-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

evogym-2.0.0-cp38-cp38-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

evogym-2.0.0-cp38-cp38-macosx_11_0_arm64.whl (4.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

evogym-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

evogym-2.0.0-cp37-cp37m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

evogym-2.0.0-cp37-cp37m-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

evogym-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file evogym-2.0.0.tar.gz.

File metadata

  • Download URL: evogym-2.0.0.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for evogym-2.0.0.tar.gz
Algorithm Hash digest
SHA256 03960296a24548a0c662e06aa4c98b8b5b47b997a004e3a53fa0f7fd03541e70
MD5 89c1a003db448feddcfe839dda5d5767
BLAKE2b-256 ac50baf8af98eb0a1282c93504a653f828c840f85b691f3bbd2e0fc74b75863b

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fbe9663361556c03aaf44d2090ab32cac0476f5c4a388998bd01f630d96f7d58
MD5 9f4d2fbee3ab0990fd8b3a17d63e32a1
BLAKE2b-256 bf250a45261032e329b8f3729884b50f25feed499c8a3a92df6f06d6825d32ed

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5b6cc8f13976fcc7ede46ae9701d13991e0fb0d40ba54c7ee2875e0621dfd22b
MD5 cb0df151d11e8e26f1d368b0f6a0fa6e
BLAKE2b-256 7bbb11ad86a4cd504efbc9372ad572fe33e9b1044c2dd2c1b19f9431b8c134e1

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 693f334f3b286ed1e587ddd20f278846c66dbf51a73a970da208e200fe9a87fe
MD5 57d8eb1f3b8afa3e49a28874ee351730
BLAKE2b-256 9842f92fa724fa55a90dae3b45139cd056308a33fe41f10327fec85986f3a52d

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 51bebe2880979ec5a3d5abdd5ab00ac3f86bb1eddf95a980a8c487a3f15e2d6c
MD5 2329368a7be36aac0294d966a236a9f9
BLAKE2b-256 09ae20ad1deb958391161925d4e280db0f81600b6f516a98af3249b2321d125c

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b1f98c0369798939619df043cd5a280a55ebebc42a202060abb8b7b45970bc0b
MD5 8c9c4130e1c27614f6adef3cafb6f589
BLAKE2b-256 eae7b3ba768ad7d4347fd35c3f47c44076654085eee68a6830abce76484edcd4

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e25b8e6e58dded60f487985f55eeaa3e433bdd3b8c0c647d2ef56e9a696fe590
MD5 779a0b1107ebf5fb972129f36eb092da
BLAKE2b-256 e0a5df05410ae3c0a30ca384d7265cbf6aa069a5480510812b199d42f0a82f38

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88003770eac04ea61427746cfcacd1989595f11ca534d307bcaa8ebf57318170
MD5 fecbcd4896cf096344289066811db1ea
BLAKE2b-256 5141081eef8351d534f462d2b72b04d3cae87a5ad5a54bb563d93a7d7f81c5da

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ef1407c96221161611c4a2962088a934a60f995ca9938f9160c9219b96c33529
MD5 2e90a6bdcf9905f90a4124e807b4855e
BLAKE2b-256 3191914fc3bd8890150bb66cf5e3c5c8bc503108e75343b9ca35ffdb0e671608

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 482b53eb4fce4313c6c4f6f32cd0c237630c422f5f3734ef4a885ed19aec8cff
MD5 ca7d051eb45b99cb02d8a5190647a3cc
BLAKE2b-256 ae2e8bbebcce4e31fdae082a428ac3d2cd50959e57fdca49a325e6280cef6880

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0132beb3973bd73db8fb2a4ab7bd9ba9a1f14a8859dd9f5a321bbf2d8f8eda96
MD5 ca5f4a4bfb2cfbaa171784b9cdec2933
BLAKE2b-256 5f78a61b1695df3b4fe296e1b0eb0bf3dee82de208bcfe4aac358983dea390c9

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6ea397cf52ac9a72b84506fc3f5fa972fefea25e3016627f2ef87f85cb79c4a
MD5 8ce98af4352146b2862a1ef0f636a057
BLAKE2b-256 316c022a2bb454d6d5d99bfcb5b13084c120e89c7fca0e4fa7478fd22649615a

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fdcfd380ace8e77f3c79d12d0569448a88b5418ff8d052b95d53b46942863308
MD5 1bd27d12feb19f08a48f78991a98908d
BLAKE2b-256 2d3c7ac4ef802dc01d1a9097b745c378660eb6f863883e5b263a710d81d3930a

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bed93caba9023af490d9d916dde81fbb40f75cd06a549d2f4e5b67222cb8fbb9
MD5 f1a5f949901854e01673e7547df71d4f
BLAKE2b-256 01c54d25be91cb31e31857b834eca3b11bdba1a1b4540b404587a8c7b4c07a5b

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 efbad1158ff226bd4d42eea856f3aa5d95b658d7dbdac174fc2f4144ae30d0fa
MD5 c220a475f6f961e0fb2fe4b4b0f3bd54
BLAKE2b-256 f9e8b571643861e56e3db3424a7412579cc9e77c27b05e943a6603dffeda2e55

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 63cb54d5fef45e7db3553aed92ef0c2120d4cf592b5babfc19803f9be260d729
MD5 a275b5c17d582c1042ba9e8636fac876
BLAKE2b-256 07fcdc938bf0d70450284d2956d3d2cf1801f63e9dabcea43fd0954a7026eb7b

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: evogym-2.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for evogym-2.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e2c27e78f2bf90c151b8a7737d2ddfda6fbded74ac799fa8e4c84f7d51764c63
MD5 f67a06bb509408c30ff167a0dacb80e5
BLAKE2b-256 a5909a3d446c74579c95ae855bae7ba6be202c33e1097b3900cc296d226495f6

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9bb22424fc2604e15ed0ed81e3133593b44847387498cfc2417b584336c20780
MD5 da21e90c80b41900cf91287ecbf25db1
BLAKE2b-256 184055b23277fbb08d3a6202a80fcef1c1a14db20a913ccacab4d8b03e6789b1

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f74e19398e9cdcf108ff01fcfa08b8499031836321ba367ecb25609993c243f0
MD5 597b84504cd9be0b9afbb6ec7047d09b
BLAKE2b-256 9e4671c3986443c2acc123102b3d2c7487269199fd767a2d5def3e5d4109b989

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd4c47d59fedc28c6ec9afb0db19e0f3ce32d1bf18e255805c906f4f85b3c2d9
MD5 9146bb09acce2f23891517685d8ea5f8
BLAKE2b-256 2e08e9d3288fdf90806882178f8c215a16b7ff0929fbe8df8ba5bad3090a185e

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: evogym-2.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for evogym-2.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1fb1a9ad07b4a04f92fe06172c2a4733cd5ab07cf3a3526118a9b5c7f8fff98a
MD5 93d1b469a5cb79a6b4e7abc8f59cf228
BLAKE2b-256 a949e394373d437cbdc62e21cc704e8848b715cdeb434dacb5de80a083771add

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c6f706e1b9f72f134559357c1ea8f203f9d94c4cb962a491a3a8f6d89ad08d3e
MD5 11c0521a070f41a1de92d5ff5e2ddc61
BLAKE2b-256 cb9215e01ae5e2f015c7eea8871f05560395750667067d88966059fad382a0d0

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1b93f5660f8b7e27580f591ab7d386e4928af3a2e2c026ec1f3ca930e1e33fa6
MD5 a8e51639fd71006f2974051f6a239bc9
BLAKE2b-256 34b1ede198f2da74b6da9294254ba19d66eab7acf6ad0fcba930c88fe69cc073

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a72078f4df8d2b74f6f0d68341ac1c99334df1ede6bcd90b5f01b6e41a50d1e9
MD5 6194e42a236abe20c586b4d9fe12f1c2
BLAKE2b-256 694918bc3a7f5ef5ed8c7e23f3a54012e1e9904ade553a4099fb5f88e7f2a84c

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: evogym-2.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for evogym-2.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 16fce24bfa31c747a444f554284158be0ca4a9292e931c989d7950877d19e098
MD5 39c322c13b2df1297f6c8d9563aa8506
BLAKE2b-256 662626417ae5e3c00265295423b4c12ca800e3499e316d572ff76ecde0700c41

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3523cd347c5ce40dd84d4d22eefa314549e5ec21cb76d96ca84a9d0e6cbf4d99
MD5 deb799cb4d6e14732d79139aa4b4f25e
BLAKE2b-256 4c742114eeaecbe5b81caf7b00f3228a741d03ab4ac9e5ce98b0b4e43f834232

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e8cfac906425e7c8df53cfbce3de365563e0bd2570593f95102bd5bafd14495a
MD5 c132922c6bcffb049b836010780b4abf
BLAKE2b-256 1e73005d3d9dfd0706ee59cad8ad4f91634ee0871ef2c5410f91262668655b52

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a23606b909bcbe376c721b3bb152c95fa8b7bb7cddf605e0c83464d8198a93d
MD5 6d0ba568834fc8941e81f89f0bc1812a
BLAKE2b-256 ed425e2da7ddddb8bc462c435c435dc26ef6afc395e15f9cb211143fec74b5cf

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: evogym-2.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for evogym-2.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 368dd4bc63c72eca0a32c6a95c28f6077b49cccd5269bb4991bb65c2ceca7fd0
MD5 1f39c864d73612f0765a3715c0ddb7b2
BLAKE2b-256 1514ef4e97e825b8930057f97b63f647241cafb229551a2de86b7978ca7f92c7

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 db73c1b95579ce649a333d3067549997625a3c2cdb8388ab74d196775278ddfe
MD5 1648fe1dab067dbde3c98edc67685a43
BLAKE2b-256 4c6bf2aa5a09db16795353595b3b77d0ea10b6a6514acb15fa45a5fcfe9990e4

See more details on using hashes here.

File details

Details for the file evogym-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for evogym-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c7b62019d6ca5fc4966575fa2c544aa00d4d49f785bafec7db00e8cd6bdf2368
MD5 993fe1644b824845bda35dbfe68cf6fa
BLAKE2b-256 edaaed3c1007cba66e86eb637242ade170a32aff6d22e405db4b5433c81ca13d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page