Skip to main content

Evolution Strategies in JAX

Project description

evosax: Evolution Strategies in JAX 🦎

Pyversions PyPI version Ruff codecov Paper

Tired of having to handle asynchronous processes for neuroevolution? Do you want to leverage massive vectorization and high-throughput accelerators for Evolution Strategies? evosax provides a comprehensive, high-performance library that implements Evolution Strategies (ES) in JAX. By leveraging XLA compilation and JAX's transformation primitives, evosax enables researchers and practitioners to efficiently scale evolutionary algorithms to modern hardware accelerators without the traditional overhead of distributed implementations.

The API follows the classical ask-eval-tell cycle of ES, with full support for JAX's transformations (jit, vmap, lax.scan). The library includes 30+ evolution strategies, from classics like CMA-ES and Differential Evolution to modern approaches like OpenAI-ES and Diffusion Evolution.

Get started here 👉 Colab

Basic evosax API Usage 🍲

import jax
from evosax.algorithms import CMA_ES


# Instantiate the search strategy
es = CMA_ES(population_size=32, solution=dummy_solution)
params = es.default_params

# Initialize state
key = jax.random.key(0)
state = es.init(key, params)

# Ask-Eval-Tell loop
for i in range(num_generations):
    key, key_ask, key_eval = jax.random.split(key, 3)

    # Generate a set of candidate solutions to evaluate
    population, state = es.ask(key_ask, state, params)

    # Evaluate the fitness of the population
    fitness = ...

    # Update the evolution strategy
    state = es.tell(population, fitness, state, params)

# Get best solution
state.best_solution, state.best_fitness

Implemented Evolution Strategies 🦎

Strategy Reference Import Example
Simple Evolution Strategy Rechenberg (1978) SimpleES Colab
OpenAI-ES Salimans et al. (2017) Open_ES Colab
CMA-ES Hansen & Ostermeier (2001) CMA_ES Colab
Sep-CMA-ES Ros & Hansen (2008) Sep_CMA_ES Colab
xNES Wierstra et al. (2014) XNES Colab
SNES Wierstra et al. (2014) SNES Colab
MA-ES Bayer & Sendhoff (2017) MA_ES Colab
LM-MA-ES Loshchilov et al. (2017) LM_MA_ES Colab
Rm_ES Li & Zhang (2017) Rm_ES Colab
PGPE Sehnke et al. (2010) PGPE Colab
ARS Mania et al. (2018) ARS Colab
ESMC Merchant et al. (2021) ESMC Colab
Persistent ES Vicol et al. (2021) PersistentES Colab
Noise-Reuse ES Li et al. (2023) NoiseReuseES Colab
CR-FM-NES Nomura & Ono (2022) CR_FM_NES Colab
Guided ES Maheswaranathan et al. (2018) GuidedES Colab
ASEBO Choromanski et al. (2019) ASEBO Colab
Discovered ES Lange et al. (2023a) DES Colab
Learned ES Lange et al. (2023a) LES Colab
EvoTF Lange et al. (2024) EvoTF_ES Colab
iAMaLGaM-Full Bosman et al. (2013) iAMaLGaM_Full Colab
iAMaLGaM-Univariate Bosman et al. (2013) iAMaLGaM_Univariate Colab
Gradientless Descent Golovin et al. (2019) GLD Colab
Simulated Annealing Rasdi Rere et al. (2015) SimAnneal Colab
Hill Climbing Rasdi Rere et al. (2015) SimAnneal Colab
Random Search Bergstra & Bengio (2012) RandomSearch Colab
SV-CMA-ES Braun et al. (2024) SV_CMA_ES Colab
SV-OpenAI-ES Liu et al. (2017) SV_OpenES Colab
Simple Genetic Algorithm Such et al. (2017) SimpleGA Colab
MR15-GA Rechenberg (1978) MR15_GA Colab
SAMR-GA Clune et al. (2008) SAMR_GA Colab
GESMR-GA Kumar et al. (2022) GESMR_GA Colab
LGA Lange et al. (2023b) LGA Colab
Diffusion Evolution Zhang et al. (2024) DiffusionEvolution Colab
Differential Evolution Storn & Price (1997) DE Colab
Particle Swarm Optimization Kennedy & Eberhart (1995) PSO Colab

Installation ⏳

You will need Python 3.10 or later, and a working JAX installation.

Then, install evosax from PyPi:

pip install evosax

To upgrade to the latest version of evosax, you can use:

pip install git+https://github.com/RobertTLange/evosax.git@main

Examples 📖

Key Features 💎

  • Comprehensive Algorithm Collection: 30+ classic and modern evolution strategies with a unified API
  • JAX Acceleration: Fully compatible with JAX transformations for speed and scalability
  • Vectorization & Parallelization: Fast execution on CPUs, GPUs, and TPUs
  • Production Ready: Well-tested, documented, and used in research environments
  • Batteries Included: Comes with optimizers like ClipUp, fitness shaping, and restart strategies

Related Resources 📚

Citing evosax ✏️

If you use evosax in your research, please cite the following paper:

@article{evosax2022github,
    author = {Robert Tjarko Lange},
    title = {evosax: JAX-based Evolution Strategies},
    journal={arXiv preprint arXiv:2212.04180},
    year = {2022},
}

Acknowledgements 🙏

We acknowledge financial support by the Google TRC and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2002/1 "Science of Intelligence" - project number 390523135.

Contributing 👷

Contributions are welcome! If you find a bug or are missing your favorite feature, please open an issue or submit a pull request following our contribution guidelines 🤗.

Disclaimer ⚠️

This repository contains independent reimplementations of LES and DES based and is unrelated to Google DeepMind. The implementation has been tested to reproduce the official results on a range of tasks.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

evosax-0.2.0.tar.gz (170.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

evosax-0.2.0-py3-none-any.whl (214.0 kB view details)

Uploaded Python 3

File details

Details for the file evosax-0.2.0.tar.gz.

File metadata

  • Download URL: evosax-0.2.0.tar.gz
  • Upload date:
  • Size: 170.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.13

File hashes

Hashes for evosax-0.2.0.tar.gz
Algorithm Hash digest
SHA256 7fefc9be3ea3f18a8346bd473a34d722723644a6096609b6ec9030e9fa4ebdd6
MD5 03dc4557a112cdcfa6d32022b1507fe0
BLAKE2b-256 611f93fc7c5db0f71f7fc7b47586c83ad6d865528c5a98f36707796fb3ebf2d9

See more details on using hashes here.

File details

Details for the file evosax-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: evosax-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 214.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.13

File hashes

Hashes for evosax-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4e4aa4426ca1eb139b3783466c8b67a2e1a1060a75ee3013e54a7cd2a2c1cd14
MD5 4a7102c41305e694e6c25ccf9be6f2e2
BLAKE2b-256 79901bc31c864bcc1ecd22c035bffd7e6a0752e69f3bb3cdc5a41f3030c15fca

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page