Skip to main content

A Python Library for Reading and Writing Excel Files

Project description

中文 | English

ExcelAlchemy User Guide

📊 ExcelAlchemy codecov

ExcelAlchemy is a Python library that allows you to download Excel files from Minio, parse user inputs, and generate corresponding Pydantic classes. It also allows you to generate Excel files based on Pydantic classes for easy user downloads.

Installation

Use pip to install:

pip install ExcelAlchemy

Usage

Generate Excel template from Pydantic class

from excelalchemy import ExcelAlchemy, FieldMeta, ImporterConfig, Number, String
from pydantic import BaseModel

class Importer(BaseModel):
    age: Number = FieldMeta(label='Age', order=1)
    name: String = FieldMeta(label='Name', order=2)
    phone: String | None = FieldMeta(label='Phone', order=3)
    address: String | None = FieldMeta(label='Address', order=4)

alchemy = ExcelAlchemy(ImporterConfig(Importer))
base64content = alchemy.download_template()
print(base64content)
  • The above is a simple example of generating an Excel template from a Pydantic class. The Excel template will have a sheet named "Sheet1" with four columns: "Age", "Name", "Phone", and "Address". "Age" and "Name" are required fields, while "Phone" and "Address" are optional.
  • The method returns a base64-encoded string that represents the Excel file. You can directly use the window.open method to open the Excel file in the front-end, or download it by typing the base64 content in the browser's address bar.
  • When downloading a template, you can also specify some default values, for example:
from excelalchemy import ExcelAlchemy, FieldMeta, ImporterConfig, Number, String
from pydantic import BaseModel

class Importer(BaseModel):
    age: Number = FieldMeta(label='Age', order=1)
    name: String = FieldMeta(label='Name', order=2)
    phone: String | None = FieldMeta(label='Phone', order=3)
    address: String | None = FieldMeta(label='Address', order=4)

alchemy = ExcelAlchemy(ImporterConfig(Importer))

sample = [
    {'age': 18, 'name': 'Bob', 'phone': '12345678901', 'address': 'New York'},
    {'age': 19, 'name': 'Alice', 'address': 'Shanghai'},
    {'age': 20, 'name': 'John', 'phone': '12345678901'},
]
base64content = alchemy.download_template(sample)
print(base64content)

In the above example, we specify a sample, which is a list of dictionaries. Each dictionary represents a row in the Excel sheet, and the keys represent column names. The method returns an Excel template with default values filled in. If a field doesn't have a default value, it will be empty. For example:

  • image

Parse a Pydantic class from an Excel file and create data

import asyncio
from typing import Any

from excelalchemy import ExcelAlchemy, FieldMeta, ImporterConfig, Number, String
from minio import Minio
from pydantic import BaseModel


class Importer(BaseModel):
    age: Number = FieldMeta(label='Age', order=1)
    name: String = FieldMeta(label='Name', order=2)
    phone: String | None = FieldMeta(label='Phone', order=3)
    address: String | None = FieldMeta(label='Address', order=4)


def data_converter(data: dict[str, Any]) -> dict[str, Any]:
    """Custom data converter, here you can modify the result of Importer.dict()"""
    data['age'] = data['age'] + 1
    data['name'] = {"phone": data['phone']}
    return data


async def create_func(data: dict[str, Any], context: None) -> Any:
    """Your defined creation function"""
    # do something to create data
    return True


async def main():
    alchemy = ExcelAlchemy(
        ImporterConfig(
            create_importer_model=Importer,
            creator=create_func,
            data_converter=data_converter,
            minio=Minio(endpoint=''),  # reachable minio address
            bucket_name='excel',
            url_expires=3600,
        )
    )
    result = await alchemy.import_data(input_excel_name='test.xlsx', output_excel_name="test.xlsx")
    print(result)


asyncio.run(main())
  • The importing function is based on Minio, so you need to install Minio and create a bucket to use this functionality for storing the Excel files.

  • The imported Excel file must be generated by the download_template() method, otherwise, it will produce a parsing error.

  • In the above example, we define a data_converter function, which is used to modify the result of Importer.dict(). The final result of data_converter function will be the parameter of the create_func function. This function is optional if you don't need to modify the data.

  • The create_func function is used to create data, and the parameter is the result of the data_converter function, and context is None. You can create data, for example, by storing the data in a database.

  • The input_excel_name parameter of the import_data() method is the name of the Excel file in Minio, and the output_excel_name parameter is the name of the Excel file with the parsing result in Minio. This file contains all the input data, and if any data fails the parsing, the first column of that data has an error message, and the error-producing cell is highlighted in red.

  • The method returns an ImportResult type result. You can see the definition of this class in the code. This class contains all the information about the parsing result, such as the number of successfully imported data, the number of failed data, the failed data, etc.

  • An example of the importing result is shown in the following image: image

Contributing

If you have any questions or suggestions regarding the ExcelAlchemy library, please raise an issue in GitHub Issues. We also welcome you to submit a pull request to contribute your code.

License

ExcelAlchemy is licensed under the MIT license. For more information, please see the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ExcelAlchemy-1.1.0.tar.gz (38.4 kB view details)

Uploaded Source

Built Distribution

excelalchemy-1.1.0-py3-none-any.whl (52.3 kB view details)

Uploaded Python 3

File details

Details for the file ExcelAlchemy-1.1.0.tar.gz.

File metadata

  • Download URL: ExcelAlchemy-1.1.0.tar.gz
  • Upload date:
  • Size: 38.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ExcelAlchemy-1.1.0.tar.gz
Algorithm Hash digest
SHA256 fe7ddf895cc36c03b5f7ad0dc9c63ff7ebe3f83dc73b6790e299180365559eab
MD5 f3649c9290c68906e96cd469d417ff5a
BLAKE2b-256 94db07a8bccd5ca745413b216b070201dc970ad90e188e1144fd8bd69a9ee72d

See more details on using hashes here.

File details

Details for the file excelalchemy-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for excelalchemy-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9b0a6d32ef3e3b52378e390baccb8fcc116fb3bbe88f305f08cf8e93504016c2
MD5 32508cf366206d64b64f428b44a93859
BLAKE2b-256 86b54d575296379e0562169df61e9c1f38629cc3d3acae2415c5214de7d3fe2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page