Skip to main content

ExhaustiveWeightedRandomSampler is an advanced version of WeightedRandomSampler

Project description

ExhaustiveWeightedRandomSampler

run test codecov

ExhaustiveWeightedRandomSampler can exhaustively sample the indices with a specific weight over epochs.

Installation

pip install exhaustive-weighted-random-sampler

Usage & Comparasion

import torch
from torch.utils.data import WeightedRandomSampler
from exhaustive_weighted_random_sampler import ExhaustiveWeightedRandomSampler

sampler = WeightedRandomSampler([1, 1, 1, 1, 1, 1, 1, 1, 1, 10], num_samples=5)
for i in range(5):
    print(list(sampler))

"""
output:
[4, 3, 9, 3, 4]
[0, 5, 0, 9, 8]
[9, 9, 0, 9, 2]
[9, 9, 7, 9, 9]
[9, 9, 9, 9, 9]

explain: there are no 1 and 6, but 0 appears three times
"""

sampler = ExhaustiveWeightedRandomSampler([1, 1, 1, 1, 1, 1, 1, 1, 1, 10], num_samples=5)
for i in range(5):
    print(list(sampler))

"""
output:
[4, 6, 9, 9, 9]
[1, 0, 9, 9, 5]
[9, 7, 3, 8, 9]
[9, 2, 1, 9, 9]
[8, 9, 7, 3, 2]

explain: all the 0 to 8 appears in the yield results.
"""

Use in DDP

It can be used in DDP if pytorch-ignite has been installed.

from ignite.distributed import DistributedProxySampler
from torch.utils.data import DataLoader

dataset = ...

sampler = DistributedProxySampler(
    ExhaustiveWeightedRandomSampler(weights, num_samples=10000)
)
loader = DataLoader(dataset, sampler=sampler, ...)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file exhaustive-weighted-random-sampler-0.0.2.tar.gz.

File metadata

File hashes

Hashes for exhaustive-weighted-random-sampler-0.0.2.tar.gz
Algorithm Hash digest
SHA256 6aec0368a6cb3e73380b487b78812a38f0399c64272336e7993592bf76e428f6
MD5 b6f07ad6c3e6a3620ebc80e17d6fe33a
BLAKE2b-256 c7f26752de715714a48ef8f4491d5ded9838cb0bd5107688ed8ce3d6334a88d9

See more details on using hashes here.

File details

Details for the file exhaustive_weighted_random_sampler-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for exhaustive_weighted_random_sampler-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0592f9ee40b8bb8299f339bb54816da5ccead2ca04164de0d27e33ccaeab1894
MD5 2b098dfc847d7a3842e5f199dee9bf9a
BLAKE2b-256 918c1b72273e8b92f614e06efcba32990dcaac64486071771271f1747c88e0df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page