A Python package to the ExMatrix method, supporting Random Forest models interpretability.
Project description
ExMatrix Method
The Explainable Matrix (ExMatrix) is a novel method for Random Forest (RF) interpretability based on the visual representations of logic rules. ExMatrix supports global and local explanations of RF models enabling tasks that involve the overview of models and the auditing of classification processes. The key idea is to explore logic rules by demand using matrix visualizations, where rows are rules, columns are features, and cells are rules predicates.
For presenting the method here, the Iris Dataset is employed.
Cite us: M. Popolin Neto and F. V. Paulovich, "Explainable Matrix - Visualization for Global and Local Interpretability of Random Forest Classification Ensembles," in IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 1427-1437, Feb. 2021, doi: 10.1109/TVCG.2020.3030354.
BibTeX: @article{PopolinNeto:2020:ExMatrix, author={Popolin{ }Neto, Mário and Paulovich, Fernando V.}, journal={IEEE Transactions on Visualization and Computer Graphics}, title={Explainable Matrix - Visualization for Global and Local Interpretability of Random Forest Classification Ensembles}, year={2021}, volume={27}, number={2}, pages={1427-1437}, doi={10.1109/TVCG.2020.3030354}}
Iris Dataset
import numpy as np
import sklearn.datasets as datasets
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
dataset = datasets.load_iris()
X = dataset.data
y = dataset.target
feature_names = dataset.feature_names
target_names = dataset.target_names
sss = list( StratifiedShuffleSplit( n_splits = 1, test_size = 0.30, random_state = 68269 ).split( X, y ) )
train_indexes = sss[ 0 ][ 0 ]
test_indexes = sss[ 0 ][ 1 ]
X_train, X_test = X[ train_indexes ], X[ test_indexes ]
y_train, y_test = y[ train_indexes ], y[ test_indexes ]
Single Decision Tree
Decision Tree Creation
kargs = eval( "{'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 4, 'random_state': 1988}" )
clf = DecisionTreeClassifier( **kargs )
clf.fit( X_train, y_train )
y_true, y_pred = y_test, clf.predict( X_test )
accuracy = accuracy_score( y_true, y_pred )
print( 'accuracy DT', accuracy )
accuracy DT 0.9111111111111111
Decision Tree Node-Link Visualization
from lrmatrix.treevis import nodelink
tree = nodelink( clf, out_file = None, max_depth = None, feature_names = feature_names, class_names = target_names, label = 'all', filled = True, leaves_parallel = False, impurity = False, node_ids = True, proportion = True, rotate = False, rounded = True, special_characters = False, precision = 2 )
tree.write_svg( 'DT.svg' )
True
Decision Tree Model Interpretability
from exmatrix import ExplainableMatrix
exm = ExplainableMatrix( n_features = len( feature_names ), n_classes = len( target_names ), feature_names = np.array( feature_names ), class_names = np.array( target_names ) )
exm.rules_extration( [ clf ], X, y, clf.feature_importances_, n_jobs = 1 )
print( 'n_rules DT', exm.n_rules_ )
n_rules DT 4
ExMatrix Global Expanation
exp = exm.explanation( info_text = '\nmax-depth 3\n\naccuracy 0.91\nerror 0.09\n' )
exp.create_svg( draw_row_labels = True, draw_col_labels = True, draw_rows_line = True, draw_cols_line = True, col_label_degrees = 10, width = 1990, height = 640, margin_bottom = 150 )
exp.save( 'IrisFlowerGE-DT.png', pixel_scale = 5 )
exp.save( 'IrisFlowerGE-DT.svg' )
exp.display_jn()
ExMatrix Local Expanation
exp = exm.explanation( exp_type = 'local', x_k = X_test[ 13 ], r_order = 'delta change', f_order = 'importance', info_text = '\ninstance 13\n' )
exp.create_svg( draw_x_k = True, draw_row_labels = True, draw_col_labels = True, draw_rows_line = True, draw_cols_line = True, col_label_degrees = 10, width = 1890, height = 600, margin_bottom = 150 )
exp.save( 'IrisFlowerLE-13-DT.png', pixel_scale = 5 )
exp.save( 'IrisFlowerLE-13-DT.svg' )
exp.display_jn()
exp = exm.explanation( exp_type = 'local', x_k = X_test[ 13 ], r_order = 'delta change', f_order = 'importance', info_text = '\ninstance 13\n' )
exp.create_svg( draw_x_k = True, draw_deltas = True, cell_background = 'used', draw_row_labels = True, draw_col_labels = True, draw_rows_line = True, draw_cols_line = True, col_label_degrees = 10, width = 1890, height = 600, margin_bottom = 150 )
exp.save( 'IrisFlowerLEDLT-13-DT.png', pixel_scale = 5 )
exp.save( 'IrisFlowerLEDLT-13-DT.svg' )
exp.display_jn()
Random Forest
Random Forest Model Creation
kargs = eval( "{'criterion': 'gini', 'n_estimators': 3, 'max_depth': 3, 'max_leaf_nodes': 4, 'random_state': 68269, 'bootstrap': False}" )
clf = RandomForestClassifier( **kargs )
clf.fit( X_train, y_train )
y_true, y_pred = y_test, clf.predict( X_test )
accuracy = accuracy_score( y_true, y_pred )
print( 'accuracy RF-3', accuracy )
accuracy RF-3 0.9555555555555556
Random Forest Model Interpretability
from exmatrix import ExplainableMatrix
exm = ExplainableMatrix( n_features = len( feature_names ), n_classes = len( target_names ), feature_names = np.array( feature_names ), class_names = np.array( target_names ) )
exm.rules_extration( clf, X, y, clf.feature_importances_, n_jobs = 3 )
print( 'n_rules RF-3', exm.n_rules_ )
n_rules RF-3 12
ExMatrix Global Expanation
exp = exm.explanation( info_text = '\ntrees 3\nmax-depth 3\n\naccuracy 0.96\nerror 0.04\n' )
exp.create_svg( draw_row_labels = True, draw_col_labels = True, draw_rows_line = True, draw_cols_line = True, col_label_degrees = 10, width = 1990, height = 940, margin_bottom = 150 )
exp.save( 'IrisFlowerGE-RF.png', pixel_scale = 5 )
exp.save( 'IrisFlowerGE-RF.svg' )
exp.display_jn()
ExMatrix Local Expanations for Instance 13
exp = exm.explanation( exp_type = 'local-used', x_k = X_test[ 13 ], r_order = 'support', f_order = 'importance', info_text = '\ninstance 13\n' )
exp.create_svg( draw_x_k = True, draw_row_labels = True, draw_col_labels = True, draw_rows_line = True, draw_cols_line = True, col_label_degrees = 10, width = 1890, height = 720, margin_bottom = 150 )
exp.save( 'IrisFlowerLEUR-13-RF.png', pixel_scale = 5 )
exp.save( 'IrisFlowerLEUR-13-RF.svg' )
exp.display_jn()
exp = exm.explanation( exp_type = 'local-closest', x_k = X_test[ 13 ], r_order = 'delta change', f_order = 'importance', info_text = '\ninstance 13\n' )
exp.create_svg( draw_x_k = True, draw_deltas = False, draw_row_labels = True, draw_col_labels = True, draw_rows_line = True, draw_cols_line = True, col_label_degrees = 10, width = 1890, height = 720, margin_bottom = 150 )
exp.save( 'IrisFlowerLESC-13-RF.png', pixel_scale = 5 )
exp.save( 'IrisFlowerLESC-13-RF.svg' )
exp.display_jn()
exp = exm.explanation( exp_type = 'local-closest', x_k = X_test[ 13 ], r_order = 'delta change', f_order = 'importance', info_text = '\ninstance 13\n' )
exp.create_svg( draw_x_k = True, draw_deltas = True, cell_background = 'used', draw_row_labels = True, draw_col_labels = True, draw_rows_line = True, draw_cols_line = True, col_label_degrees = 10, width = 1890, height = 720, margin_bottom = 150 )
exp.save( 'IrisFlowerLESC-13-RF-D.png', pixel_scale = 5 )
exp.save( 'IrisFlowerLESC-13-RF-D.svg' )
exp.display_jn()
IEEE VIS 2020
The exmatrix method was presented in the IEEE VIS 2020, the premier forum for advances in Visualization and Visual Analytics.
References
ExMatrix uses the Logic Rules Matrix package, which also supports the multiVariate dAta eXplanation - VAX method. Both ExMatrix and VAX employ a matrix-like visual metaphor for logic rules visualization, where rules are rows, features (variables) are columns, and rules predicates are cells.
The ExMatrix must be used for model (predictive) explanations (model interpretability/explainability), while VAX must be employed for data (descriptive) explanations (phenomenon understanding).
[1] Popolin Neto, M. (2021). Random Forest interpretability - explaining classification models and multivariate data through logic rules visualizations. Doctoral Thesis, Instituto de Ciências Matemáticas e de Computação, University of São Paulo, São Carlos. doi:10.11606/T.55.2021.tde-03032022-105725.
BibTeX: @phdthesis{PopolinNeto:2021:Thesis, doi = {10.11606/t.55.2021.tde-03032022-105725}, publisher = {Universidade de Sao Paulo, Agencia {USP} de Gestao da Informacao Academica ({AGUIA})}, author = {M{'{a}}rio Popolin{ }Neto}, title = {Random Forest interpretability - explaining classification models and multivariate data through logic rules visualizations}}
[2] M. Popolin Neto and F. V. Paulovich, "Explainable Matrix - Visualization for Global and Local Interpretability of Random Forest Classification Ensembles," in IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 1427-1437, Feb. 2021, doi: 10.1109/TVCG.2020.3030354.
BibTeX: @article{PopolinNeto:2020:ExMatrix, author={Popolin{ }Neto, Mário and Paulovich, Fernando V.}, journal={IEEE Transactions on Visualization and Computer Graphics}, title={Explainable Matrix - Visualization for Global and Local Interpretability of Random Forest Classification Ensembles}, year={2021}, volume={27}, number={2}, pages={1427-1437}, doi={10.1109/TVCG.2020.3030354}}
[3] M. Popolin Neto and F. V. Paulovich, "Multivariate Data Explanation by Jumping Emerging Patterns Visualization," in IEEE Transactions on Visualization and Computer Graphics, 2022, doi: 10.1109/TVCG.2022.3223529.
BibTeX: @article{PopolinNeto:2022:VAX, author={Popolin{ }Neto, Mário and Paulovich, Fernando V.}, journal={IEEE Transactions on Visualization and Computer Graphics}, title={Multivariate Data Explanation by Jumping Emerging Patterns Visualization}, year={2022}, volume={}, number={}, pages={1-16}, doi={10.1109/TVCG.2022.3223529}}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file exmatrix-0.2.3-py3-none-any.whl
.
File metadata
- Download URL: exmatrix-0.2.3-py3-none-any.whl
- Upload date:
- Size: 9.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc1078d7ea30fad76f24e9f7e48fd59cae11f771c943297de4f0e2f753ac2964 |
|
MD5 | 5c17e78ee32855a15077249826d5ae43 |
|
BLAKE2b-256 | fbc32ddc60c21cb698afba022d8dde6aebe518037edf832915cd64a1996fd9b5 |