Skip to main content

Counterfactual generation with STONED SELFIES

Project description

Explaining why that molecule

GitHub tests paper docs PyPI version MIT license

exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help users understand why a molecule is predicted to have a property.

Install

pip install exmol

Counterfactual Generation

Our package implements the Model Agnostic Counterfactual Compounds with STONED (MACCS) to generate counterfactuals. A counterfactual can explain a prediction by showing what would have to change in the molecule to change its predicted class. Here is an eample of a counterfactual:

This package is not popular. If the package had a logo, it would be popular.

In addition to having a changed prediction, a molecular counterfactual must be similar to its base molecule as much as possible. Here is an example of a molecular counterfactual:

counterfactual demo

The counterfactual shows that if the carboxylic acid were an ester, the molecule would be active. It is up to the user to translate this set of structures into a meaningful sentence.

Usage

Let's assume you have a deep learning model my_model(s) that takes in one SMILES string and outputs a predicted binary class. To generate counterfactuals, we need to wrap our function so that it can take both SMILES and SELFIES, but it only needs to use one.

We first expand chemical space around the prediction of interest

import exmol

# mol of interest
base = 'Cc1onc(-c2ccccc2Cl)c1C(=O)NC1C(=O)N2C1SC(C)(C)C2C(=O)O'

samples = exmol.sample_space(base, lambda smi, sel: my_model(smi), batched=False)

Here we use a lambda to wrap our function and indicate our function can only take one SMILES string, not a list of them with batched=False. Now we select counterfactuals from that space and plot them.

cfs = exmol.cf_explain(samples)
exmol.plot_cf(cfs)
set of counterfactuals

We can also plot the space around the counterfactual. This is computed via PCA of the affinity matrix -- the similarity with the base molecule. Due to how similarity is calculated, the base is going to be the farthest from all other molecules. Thus your base should fall on the left (or right) extreme of your plot.

cfs = exmol.cf_explain(samples)
exmol.plot_space(samples, cfs)
chemical space

Each counterfactual is a Python dataclass with information allowing it to be used in your own analysis:

print(cfs[1])
{
'smiles': 'Cc1onc(-c2ccccc2Cl)c1C(=O)NC1C(=O)N2C1SC(C)(C)C2C',
'selfies': '[C][C][O][N][=C][Branch1_1][Branch2_3][C][=C][C][=C][C][=C][Ring1][Branch1_2][Cl][C]
            [Expl=Ring1][N][C][Branch1_2][C][=O][N][C][C][Branch1_2][C][=O][N][C][Ring1][Branch1_1][S][C]
            [Branch1_1][C][C][Branch1_1][C][C][C][Ring1][Branch1_3][C]',
'similarity': 0.8,
'yhat': 1,
'index': 1813,
'position': array([-7.8032394 ,  0.51781263]),
'is_origin': False,
'cluster': -1,
'label': 'Counterfactual 1'
}

Chemical Space

When calling exmol.sample_space you can pass preset=<preset>, which can be one of the following:

  • 'narrow': Only one change to molecular structure, reduced set of possible bonds/elements
  • 'medium': Default. One or two changes to molecular structure, reduced set of possible bonds/elements
  • 'wide': One through five changes to molecular structure, large set of possible bonds/elements
  • 'chemed': A restrictive set where only pubchem molecules are considered. Experimental
  • 'custom': A restrictive set where only molecules provided by the "data" key are considered. Experimental

You can also pass num_samples as a "request" for number of samples. You will typically end up with less due to degenerate molecules. See API for complete description.

SVG

Molecules are by default drawn as PNGs. If you would like to have them drawn as SVGs, call insert_svg after calling plot_space or plot_cf

import skunk
exmol.plot_cf(exps)
svg = exmol.insert_svg(exps, mol_fontsize=16)

# for Jupyter Notebook
skunk.display(svg)

# To save to file
with open('myplot.svg', 'w') as f:
    f.write(svg)

This is done with the skunk🦨 library.

API and Docs

Read API here. You should also read the paper (see below) for a more exact description of the methods and implementation.

Developing

This repo uses pre-commit, so after cloning run pip install -r requirements.txt and pre-commit install prior to committing.

Citation

Please cite Wellawatte et al.

 @article{wellawatte_seshadri_white_2021,
 place={Cambridge},
 title={Model agnostic generation of counterfactual explanations for molecules},
 DOI={10.33774/chemrxiv-2021-4qkg8},
 journal={ChemRxiv},
 publisher={Cambridge Open Engage},
 author={Wellawatte, Geemi P and Seshadri, Aditi and White, Andrew D},
 year={2021}}

This content is a preprint and has not been peer-reviewed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

exmol-0.5.0.tar.gz (22.8 kB view details)

Uploaded Source

Built Distribution

exmol-0.5.0-py3-none-any.whl (21.7 kB view details)

Uploaded Python 3

File details

Details for the file exmol-0.5.0.tar.gz.

File metadata

  • Download URL: exmol-0.5.0.tar.gz
  • Upload date:
  • Size: 22.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for exmol-0.5.0.tar.gz
Algorithm Hash digest
SHA256 6b04765be2267e1f58aaa305df5dc1b9ca7b6bc39fae6bae71859b3f8c9b9e10
MD5 87e0c6a1c6d11648e2bac6f7c503dab7
BLAKE2b-256 39c98cbc35311025ec5684122415872a146ef66de67dc04d3087b341fefba57e

See more details on using hashes here.

File details

Details for the file exmol-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: exmol-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 21.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for exmol-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1e924d2b696d12c7a18c47f5ddee4c912c723814779bf0322323ec62defa7403
MD5 409954d99e9895d42539749ba0fa4109
BLAKE2b-256 4e6f18417cd9306162684e3a857b8c7fa66c3aacdf9340f5686d25bd0a43a8e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page