Skip to main content

Auto-differentiable line-by-line spectral modeling of exoplanets/brown dwarfs using JAX.

Project description

ExoJAX

License Docs arxiv paper

Differentiable spectral modelling of exoplanets/brown dwarfs/M dwarfs using JAX! Read the docs 🐕. In short, ExoJAX allows you to do gradient based optimizations, HMC-NUTS, and SVI using the latest database.

ExoJAX is at least compatible with

ExoJAX Classes
  • Databases: *db (mdb: molecular, adb: atomic, cdb:continuum, pdb: particulates)
  • Opacity Calculators: opa (Voigt profile, CIA, Mie, Rayleigh scattering etc)
  • Atmospheric Radiative Transfer: art (emission w, w/o scattering, refelction, transmission)
  • Spectral Operator: sop (planet rotation, instrumental boradening)
  • Atompsheric Microphysics: amp (clouds etc)

Get Started

See this page for the first step!

Real Examples (external)

  • :star: exojaxample_WASP39b : An example of HMC-NUTS for actual hot Saturn (JWST/ERS, NIRSPEC/G395H)
  • :star: exojaxample_jupiter : An example of HMC-NUTS for actual Jupiter reflection spectrum

References

paper

  • Paper I: Kawahara, Kawashima, Masuda, Crossfield, Pannier, van den Bekerom, ApJS 258, 31 (2022)
  • Paper II: in prep

License

🐈 Copyright 2020-2024 ExoJAX contributors. ExoJAX is publicly available under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ExoJAX-1.6-py2.py3-none-any.whl (6.6 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file ExoJAX-1.6-py2.py3-none-any.whl.

File metadata

  • Download URL: ExoJAX-1.6-py2.py3-none-any.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/6.0.0 pkginfo/1.6.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for ExoJAX-1.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 adfc1fa6bae8f89ede27c90b029474643e86b66e95b3e5e93a6320a37f9ca944
MD5 e64722bb91dbb68edd855cabf8c151e5
BLAKE2b-256 550bd8b32250133eaf76d441b87d18f995f1cad40255d5915015c5ee37456c31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page