Library to compute the experienced density
Project description
About
expden
is a library that provides functions to calculate the
experienced density, using a modern stack of GIS libraries in Python.
Basic Usage
To calculate experienced density you just need a raster and a vector file. Important!
import rioxarray
import geopandas
import expden as xp
grid = rioxarray.open_rasterio(r"my_raster.tiff")
vector = geopandas.read_file("my_vector")
expden_vector = xp.experienced_density(raster=grid, vector=vector, radius=10)
expden_vector.to_file("exp.geojson")
What is Experienced Density?
As described by Diego Puga:
"Population or employment density is often used as a summary statistic to describe the spatial concentration of economic activity. In this context, density is commonly defined as the number of individuals per unit geographic area. Such "naive density" is easy to calculate. However, it may not appropriately reflect the density actually faced by the individual or firm at hand. One problem is that economic units are traditionally defined as aggregates of administrative units: for example, us metropolitan areas are defined based on counties. However, if a metro area includes some counties with substantial rural portions, such calculation will understate the density experienced by most economic actors. In particular, the match between urban and county boundaries is systematically looser for younger and less dense metropolitan areas in the West. De la Roca and Puga (2017) and and Henderson, Kriticos, and Nigmatulina (2020) have proposed measuring "experienced density" by counting population within a given radius around each individual. Such experienced density, in addition to dealing with the uneven tightness of area boundaries, captures better how close the typical individual is to other people when population is unevenly distributed. To give an illustrative example at the level of countries, where boundaries are given, the United States has nearly nine times the population of Canada with a slightly smaller surface area, so its naive density is ten times higher. And yet walking around cities and towns in both countries, one likely perceives similar concentrations of people nearby."
How is it calculated?
Experienced density can be defined as population within K kilometres of the average resident in a given area. To calculate it, we need a grid or raster and a vector file delineating the areas of interest:
- Measure the number of people within a K kilometres radius of each cell in a population grid for given population grid.
- Compute, for all grid cells in area, the population-weighted average of this count of people within K kilometres. Weighting by population is important, since otherwise we would be calculating population within K kilometres of the average place instead of within K kilometres of the average person.
You can use rasters of different nature. For example, rasters with data on pollution or particulate matter. Go and see the docs for more!
Installation and Requirements
For the installation of the package, you need a Python >= 3.9.16
version. I recommend using an isolated virtual environment.
Please, take into account that you may need to install other GIS libraries in your system, such as GDAL or PROJ4.
To install the latest stable version of the library, please use pip
:
pip install expden
The main dependencies of the project include geopandas
, xarray-spatial
, rioxarray
and geocube
.
TO DO List
- First working version
- Add documentation
- Add examples
- Parallel version of the main funcionality
References
This library abstracts the functionality needed to perform the experienced density calculations that you can see in the economic academic literature. Some references:
De la Roca, Jorge and Diego Puga. 2017. Learning by working in big cities. Review of Economic Studies 84(1): 106-142.
Duranton, Gilles and Diego Puga. 2020. The economics of urban density. Journal of Economic Perspectives 34(3): 3-26.
Henderson, J. Vernon, Sebastian Kriticos, and Jamila Nigmatulina. 2020. Measuring urban economic density. Journal of Urban Economics (forthcoming).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file expden-0.1.2.tar.gz
.
File metadata
- Download URL: expden-0.1.2.tar.gz
- Upload date:
- Size: 4.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.11.2 Darwin/21.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69039e0827f7764b2bb21d90ef4c50b4d9b4d08ab3ac38f4e3de82e0d79c4b07 |
|
MD5 | 9b60f0cbb1c9549905453a98fc6fe1ca |
|
BLAKE2b-256 | 02ddf2fad66b74c8eb1731b83b1c6608dcecfe653ee01598c0f2720f9ef1f171 |
File details
Details for the file expden-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: expden-0.1.2-py3-none-any.whl
- Upload date:
- Size: 5.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.11.2 Darwin/21.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f45fe149fe81ee6b6badfb7e865eabf6a1d5ad9e63dea8aa0afa3b9aec3e03e0 |
|
MD5 | 53e0cd11eb4e5040236adcd192cc55f6 |
|
BLAKE2b-256 | 09ab4983ab1d36722952cc8fc394d29a8f27ee196350af45e6f2e22a20681278 |