Skip to main content

Explore/examine/explain/expose your model with the explabox!

Project description

explabox logo

"{Explore | Examine | Expose | Explain} your model with the explabox!"


Status
Latest release PyPI Downloads Python_version License
Development Lint, Security & Tests codecov Documentation Status Code style: black

The explabox aims to support data scientists and machine learning (ML) engineers in explaining, testing and documenting AI/ML models, developed in-house or acquired externally. The explabox turns your ingestibles (AI/ML model and/or dataset) into digestibles (statistics, explanations or sensitivity insights)!

ingestibles to digestibles

The explabox can be used to:

  • Explore: describe aspects of the model and data.
  • Examine: calculate quantitative metrics on how the model performs.
  • Expose: see model sensitivity to random inputs (safety), test model generalizability (e.g. sensitivity to typos; robustness), and see the effect of adjustments of attributes in the inputs (e.g. swapping male pronouns for female pronouns; fairness), for the dataset as a whole (global) as well as for individual instances (local).
  • Explain: use XAI methods for explaining the whole dataset (global), model behavior on the dataset (global), and specific predictions/decisions (local).

A number of experiments in the explabox can also be used to provide transparency and explanations to stakeholders, such as end-users or clients.

:information_source: The explabox currently only supports natural language text as a modality. In the future, we intend to extend to other modalities.

© National Police Lab AI (NPAI), 2022

Quick tour

The explabox is distributed on PyPI. To use the package with Python, install it (pip install explabox), import your data and model and wrap them in the Explabox:

>>> from explabox import import_data, import_model
>>> data = import_data('./drugsCom.zip', data_cols='review', label_cols='rating')
>>> model = import_model('model.onnx', label_map={0: 'negative', 1: 'neutral', 2: 'positive'})

>>> from explabox import Explabox
>>> box = Explabox(data=data,
...                model=model,
...                splits={'train': 'drugsComTrain.tsv', 'test': 'drugsComTest.tsv'})

Then .explore, .examine, .expose and .explain your model:

>>> # Explore the descriptive statistics for each split
>>> box.explore()
drugscom_explore
>>> # Show wrongly classified instances
>>> box.examine.wrongly_classified()
drugscom_examine
>>> # Compare the performance on the test split before and after adding typos to the text
>>> box.expose.compare_metrics(split='test', perturbation='add_typos')
drugscom_expose
>>> # Get a local explanation (uses LIME by default)
>>> box.explain.box.explain_prediction('Hate this medicine so much!')
drugscom_explain

For more information, visit the explabox documentation.

Contents

Installation

The easiest way to install the latest release of the explabox is through pip:

user@terminal:~$ pip install explabox
Collecting explabox
...
Installing collected packages: explabox
Successfully installed explabox

:information_source: The explabox requires Python 3.8 or above.

See the full installation guide for troubleshooting the installation and other installation methods.

Documentation

Documentation for the explabox is hosted externally on explabox.rtfd.io.

layers

The explabox consists of three layers:

  1. Ingestibles provide a unified interface for importing models and data, which abstracts away how they are accessed and allows for optimized processing.
  2. Analyses are used to turn opaque ingestibles into transparent digestibles. The four types of analyses are explore, examine, explain and expose.
  3. Digestibles provide insights into model behavior and data, assisting stakeholders in increasing the explainability, fairness, auditability and safety of their AI systems. Depending on their needs, these can be accessed interactively (e.g. via the Jupyter Notebook UI or embedded via the API) or through static reporting.

Example usage

The example usage guide showcases the explabox for a black-box model performing multi-class classification of the UCI Drug Reviews dataset.

Without requiring any local installations, the notebook is provided on Open in Colab.

If you want to follow along on your own device, simply pip install explabox-demo-drugreview and run the lines in the Jupyter notebook we have prepared for you!

Releases

The explabox is officially released through PyPI. The changelog includes a full overview of the changes for each version.

Contributing

The explabox is an open-source project developed and maintained primarily by the Netherlands National Police Lab AI (NPAI). However, your contributions and improvements are still required! See contributing for a full contribution guide.

Citation

...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

explabox-1.0.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

explabox-1.0.0-py3-none-any.whl (39.7 kB view details)

Uploaded Python 3

File details

Details for the file explabox-1.0.0.tar.gz.

File metadata

  • Download URL: explabox-1.0.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.3

File hashes

Hashes for explabox-1.0.0.tar.gz
Algorithm Hash digest
SHA256 1a384ef4e338337765673eb755839e457ae1ed54a48557b8b56a73aab030116b
MD5 190aa73fad5839847e5d37dc67adf90e
BLAKE2b-256 3fc08dcc9b09b4af233d657188e45a6f05cde64227a847052a60aa07d233f7f5

See more details on using hashes here.

File details

Details for the file explabox-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: explabox-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 39.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.3

File hashes

Hashes for explabox-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b8464e58abde6eb63743dd2f6af6314caafb561ecdcd32e00d79ffcc28d445d5
MD5 ca10d8086f03ac06d479405233680c42
BLAKE2b-256 f3a4fa61b47b53484c138471a105190b25d6ff636022ac480e0246aeef6172bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page