Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Exprec records your experiments so you can compare different runs and easily reproduce results.

Project description

Exprec

Exprec records your experiments so you can compare different runs and easily reproduce results.

  • Track your experiments for experiment comparison and reproducability
  • Minimum setup: only two lines of code required
  • Framework agnostic - works with any machine learning/deep learning framework
  • Experiments are saved locally - nothing is saved in the cloud

Dashboard

Installation

pip install exprec

Usage

Minimal example

from exprec import Experiment

with Experiment() as experiment:
    # YOUR CODE HERE

An experiment is recorded in the with statement. This includes recording the terminal output, the source code used and the packages that are installed at the time the experiment runs. You can also add parameters, scalars and images to the experiment (see below).

Dashboard

Run exprec in your terminal to start the dashboard. exprec has to be run from the same folder as you started your python script.

Now visit http://localhost:8080/ in your browser to see the dashboard. If the client and the exprec server run on different machines, set the flag --host=0.0.0.0 when starting exprec. This allows any client with access to the server to see the dashboard.

More code examples

from exprec import Experiment

with Experiment(title='My experiment', tags=['tag1', 'tag2']) as experiment:
    experiment.set_parameter('test_parameter', 5)

    for i in range(10):
        experiment.add_scalar('2x', 2*i, step=i)
        experiment.add_scalar('3x', 3*i, step=i)

    with experiment.open('filename.txt', mode='w') as fp:
        fp.write('test\n')
        # This creates a file in the experiment's folder (`.exprec/<experiment-id>/files/filename.txt`). 

    raise ValueError('Invalid value')
    # The experiment will finish with status 'failed'. The exception is also logged. 

Examples

Scripts under examples/ demonstrate how to use this package.

API

Experiment

Experiment(title='', tags=[], verbose=True, exceptions_to_ignore=['KeyboardInterrupt'], name='')

set_parameter

Experiment.set_parameter(name, value)

Sets the parameter to the given value.

Only one value can be recorded per parameter. You can overwrite a previously set parameter.

add_scalar

Experiment.add_scalar(name, value, step=None)

Records the scalar's value at a given step.

add_image

Experiment.add_image(name, image, step)

Adds an image at a given step.

Args:
    name (str): The name of the image
    image: The image to save. Should either be a Pillow image, or a numpy array which can be converted to a Pillow image.
    step (int)

open

Experiment.open(filename, mode='r', uuid=None)

Opens a file in the experiment's folder.

Args:
    filename (str): A filename or path to a filename
    mode (str): The mode in which the file is opened. Supports the same modes as Python's built-in `open()` function.
    uuid (str, None): A previous experiment's id. If given, it will look for the filename in the previous experiment's
        saved files. Only supports 'r' mode when a uuid is given.
Returns:
    A file object

Why "Exprec"?

Exprec is short for Experiment recorder.

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for exprec, version 0.1.1
Filename, size File type Python version Upload date Hashes
Filename, size exprec-0.1.1-py3-none-any.whl (29.7 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size exprec-0.1.1.tar.gz (25.4 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page