A tool for creating, reading and visualizing Pascal VOC annotations
Project description
Express Pascal Voc Tools
A tool for creating, reading and visualizing Pascal VOC annotations. Report Bugs here
Getting Started
Install
pip install express-pascal-voc-tools
Single file Parsing
from voc_tools import reader as voc_reader
# `from_xml()` parse XML
for anno in voc_reader.from_xml(r"sixray_data\train\Annotations\P00002.xml"):
print(anno.xmin, anno.xmax)
# `from_image()` Parse XML by providing image path(it will automatically choose the correct XML)
for anno in voc_reader.from_image(r"sixray_data\train\JPEGImages\P00002.jpeg"):
print(anno.xmin, anno.xmax)
# `from_file()` Get the parsed metadata as a tuple
for anno in voc_reader.from_file(r"sixray_data\train\JPEGImages\P00002.xml"):
print(anno.raw())
for anno in voc_reader.from_file(r"sixray_data\train\JPEGImages\P00002.jpeg"):
print(anno.raw())
# `from_dir()` Get the parsed metadata as a tuple for entire directory
for anno in voc_reader.from_dir("sixray_data\train")):
print(anno.raw())
Dataset level parsing
Using VOCDataset
class we can address a Pascal VOC dataset. In general Pascal VOC
Datasets are organised as below:
my_dataset
|
+- train
| |
| +- Annotations
| | |
| | +- ITEM001.xml
| | +- ITEM002.xml
| +- JPEGImages
| |
| +- ITEM001.jpeg
| +- ITEM002.jpeg
+- test
|
+- Annotations
| |
| +- ITEM0010.xml
| +- ITEM0020.xml
+- JPEGImages
|
+- ITEM0010.jpeg
+- ITEM0020.jpeg
from voc_tools.utils import VOCDataset
dataset_path = "/my_dataset"
# initialize a dataset
my_dataset = VOCDataset(dataset_path)
# fetch annotation
for anno in my_dataset.train.fetch():
print(anno)
# parse the annotations into memory for train dataset
my_dataset.train.load()
my_dataset.test.load()
# returns a list of class names in train dataset
my_dataset.train.class_names()
my_dataset.test.class_names()
# save parsed information into csv
my_dataset.train.load().to_csv("./train_metadata.csv")
my_dataset.test.load().to_csv("./train_metadata.csv")
# purge the parsed metadata to free memory
my_dataset.train.unload()
my_dataset.test.unload()
Caption Support
This is an optional feature introduced to facilitate the new trends in prompt engineering and text based Generative AI.
In this case the dataset must contain a text
directory as below:
my_dataset
|
+- train
| |
| +- Annotations
| | |
| | +- ITEM001.xml
| | +- ITEM002.xml
| +- JPEGImages
| |
| +- ITEM001.jpeg
| +- ITEM002.jpeg
| +- text
| |
| +- ITEM001.text
| +- ITEM002.text
+- test
|
+- Annotations
| |
| +- ITEM0010.xml
| +- ITEM0020.xml
+- JPEGImages
|
+- ITEM0010.jpeg
+- ITEM0020.jpeg
+- text
|
+- ITEM0010.text
+- ITEM0020.text
from voc_tools.utils import VOCDataset
dataset_path = "/my_dataset"
voc_caption_data = VOCDataset(dataset_path, caption_support=True) # init dataset with caption
# read caption one by one
for caption in voc_caption_data.train.caption.fetch():
print(caption.raw())
# save captions to a CSV
voc_caption_data.train.caption.to_csv("train_captions.csv")
Collaborate
GitHub: https://github.com/Redcof/pascal_voc_tools.git
Build and Publish
python setup.py sdist bdist_wheel
python -m twine upload dist/*
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for express-pascal-voc-tools-0.5.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | c62506e6c95f5a28320e48812b724514b0b7f0beb59d675f6c24189a57f31e14 |
|
MD5 | b2380e0d840a8cc71ee110f5b2fc7364 |
|
BLAKE2b-256 | cdf974e4de35ada4d9b16e6a40f19d3bec9c0b9666a94bc5847df835cef1f0bb |
Close
Hashes for express_pascal_voc_tools-0.5.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46ef557ca8a0d202890cfa6222dbc59f60497c877c9e0e725792b895a00e1026 |
|
MD5 | adcd54ca5e0e6a2992c2266757285cd8 |
|
BLAKE2b-256 | a979a867f5d31f75be66ffaf23f9df764e01b762d79c36f6d0aff6ededfe40ea |