Skip to main content

A tool for creating, reading and visualizing Pascal VOC annotations

Project description

Express Pascal Voc Tools

A tool for creating, reading and visualizing Pascal VOC annotations. Report Bugs here

Getting Started

Install

pip install express-pascal-voc-tools

Single file Parsing

from voc_tools import reader as voc_reader

# `from_xml()` parse XML
for anno in voc_reader.from_xml(r"sixray_data\train\Annotations\P00002.xml"):
    print(anno.xmin, anno.xmax)

# `from_image()` Parse XML by providing image path(it will automatically choose the correct XML)
for anno in voc_reader.from_image(r"sixray_data\train\JPEGImages\P00002.jpeg"):
    print(anno.xmin, anno.xmax)

# `from_file()` Get the parsed metadata as a tuple
for anno in voc_reader.from_file(r"sixray_data\train\JPEGImages\P00002.xml"):
    print(anno.raw())
for anno in voc_reader.from_file(r"sixray_data\train\JPEGImages\P00002.jpeg"):
    print(anno.raw())

# `from_dir()` Get the parsed metadata as a tuple for entire directory
for anno in voc_reader.from_dir("sixray_data\train")):
    print(anno.raw())

Dataset level parsing

Using VOCDataset class we can address a Pascal VOC dataset. In general Pascal VOC Datasets are organised as below:

my_dataset
    |
    +- train
    |   |
    |   +- Annotations
    |   |  |
    |   |  +- ITEM001.xml
    |   |  +- ITEM002.xml
    |   +- JPEGImages
    |       |
    |       +- ITEM001.jpeg
    |       +- ITEM002.jpeg
    +- test
        |
        +- Annotations
        |  |
        |  +- ITEM0010.xml
        |  +- ITEM0020.xml
        +- JPEGImages
            |
            +- ITEM0010.jpeg
            +- ITEM0020.jpeg
from voc_tools.utils import VOCDataset

dataset_path = "/my_dataset"

# initialize a dataset
my_dataset = VOCDataset(dataset_path)

# fetch annotation bulk
for annotations, jpeg in my_dataset.train.fetch():
    print(annotations[0].filename, jpeg.image.shape)
# fetch annotation
for anno, jpeg in my_dataset.train.fetch(bulk=False):
    print(anno, jpeg.image.shape)

# parse the annotations into memory for train dataset
my_dataset.train.load()
my_dataset.test.load()

# returns a list of class names in train dataset
my_dataset.train.class_names()
my_dataset.test.class_names()

# save parsed information into csv
my_dataset.train.load().to_csv("./train_metadata.csv")
my_dataset.test.load().to_csv("./train_metadata.csv")

# purge the parsed metadata to free memory
my_dataset.train.unload()
my_dataset.test.unload()

Caption Support

This is an optional feature introduced to facilitate the new trends in prompt engineering and text based Generative AI. In this case the dataset must contain a text directory as below:

my_dataset
    |
    +- train
    |   |
    |   +- Annotations
    |   |  |
    |   |  +- ITEM001.xml
    |   |  +- ITEM002.xml
    |   +- JPEGImages
    |       |
    |       +- ITEM001.jpeg
    |       +- ITEM002.jpeg
    |   +- text
    |       |
    |       +- ITEM001.text
    |       +- ITEM002.text
    +- test
        |
        +- Annotations
        |  |
        |  +- ITEM0010.xml
        |  +- ITEM0020.xml
        +- JPEGImages
            |
            +- ITEM0010.jpeg
            +- ITEM0020.jpeg
        +- text
            |
            +- ITEM0010.text
            +- ITEM0020.text
from voc_tools.utils import VOCDataset

dataset_path = "/my_dataset"
voc_caption_data = VOCDataset(dataset_path, caption_support=True)  # init dataset with caption

# read caption bulk
for captions in voc_caption_data.train.caption.fetch():
    print(captions[0].raw())

# read caption one by one
for caption in voc_caption_data.train.caption.fetch(bulk=False):
    print(caption.raw())
# save captions to a CSV
voc_caption_data.train.caption.to_csv("train_captions.csv")

Visualize

from voc_tools.visulizer import from_jpeg, see_jpeg

jpeg = from_jpeg(r"sixray_data\train\JPEGImages\P00002.jpg")
jpeg.see()
# OR
see_jpeg(r"sixray_data\train\JPEGImages\P00002.jpg")

Collaborate

GitHub: https://github.com/Redcof/pascal_voc_tools.git

Build and Publish

  1. python setup.py sdist bdist_wheel
  2. python -m twine upload dist/*

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

express-pascal-voc-tools-0.7.0.tar.gz (19.4 kB view hashes)

Uploaded Source

Built Distribution

express_pascal_voc_tools-0.7.0-py3-none-any.whl (20.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page