Skip to main content

Library to quickly build basic datasets for Named Entity Recognition (NER) and Relation Extraction (RE) Machine Learning tasks.

Project description

extr-ds

Library to programmatically build labeled datasets for Named-Entity Recognition (NER) and Relation Extraction (RE) Machine Learning tasks.


Install

pip install extr-ds

Command Line

see Instructions on how to use the command line utility to manage your project.

1. Init Project

extr-ds --init

2. Split and Annotate

extr-ds --split

3.a Annotate Entities or Relations Again?

extr-ds --annotate -ents
extr-ds --annotate -rels

3.b Change Relation Extraction Label

extr-ds --relate -label NO_RELATION=5,7,9

3.b Remove Relation Extraction Instance

extr-ds --relate -delete 5,6,7

3.c Recover removed Relation Extraction Instances

extr-ds --relate -recover 5,6,7

4. Save

extr-ds --save -ents
extr-ds --save -rels

5. Reset "Gold Standard" datasets

extr-ds --reset

6. Help!?

extr-ds --help

API

Example

text = 'Ted Johnson is a pitcher.'

1. Label Entities for Named-Entity Recognition Task (NER)

from extr import RegEx, RegExLabel
from extr.entities import EntityExtactor
from extr_ds.labelers import IOB

entity_extractor = EntityExtactor([
    RegExLabel('PERSON', [
        RegEx([r'(ted\s+johnson|ted)'], re.IGNORECASE)
    ]),
    RegExLabel('POSITION', [
        RegEx([r'pitcher'], re.IGNORECASE)
    ]),
])

sentence_tokenizer = ## 3rd party tokenizer ##
label = IOB(sentence_tokenizer, entity_extractor).label(text)

## label == <Label tokens=..., labels=['B-PERSON', 'I-PERSON', 'O', 'O', 'B-POSITION', 'O']>

2. Annotate for Relation Extraction Task (RE)

from extr.entities import EntityExtractor
from extr.relations import RegExRelationLabelBuilder, \
                           RelationExtractor
from extr_ds.labelers import RelationClassification
from extr_ds.labelers.relation import RelationBuilder, BaseRelationLabeler, RuleBasedRelationLabeler


person_to_position_relationship = RegExRelationLabelBuilder('is_a') \
    .add_e1_to_e2(
        'PERSON',
        [
            r'\s+is\s+a\s+',
        ],
        'POSITION'
    ) \
    .build()

base_relation_labeler = BaseRelationLabeler(
    RelationBuilder(relation_formats=[
        ('PERSON', 'POSITION', 'NO_RELATION')
    ])
)

rule_based_relation_labeler = RuleBasedRelationLabeler(
    RelationExtractor([person_to_position_relationship])
)

labeler = RelationClassification(
    EntityExtractor([
        RegExLabel('PERSON', [
            RegEx([r'(ted johnson|bob)'], re.IGNORECASE)
        ]),
        RegExLabel('POSITION', [
            RegEx([r'pitcher'], re.IGNORECASE)
        ]),
    ]),
    base_relation_labeler,
    relation_labelers=[
        rule_based_relation_labeler
    ]
)

results = labeler.label(text)

## results.relation_labels == [
##    <RelationLabel sentence="<e1>Ted Johnson</e1> is a <e2>pitcher</e2>." label="is_a">
## ]

3. Find and define the type of difference between labels

from extr_ds.validators import check_for_differences

differences_in_labels = check_for_differences(
    ['B-PERSON', 'I-PERSON', 'O', 'O', 'B-POSITION', 'O'],
    ['B-PERSON', 'O', 'O', 'O', 'B-POSITION', 'O']
)

## differences_in_labels.has_diffs == True
## differences_in_labels.diffs_between_labels == [
##      <Difference index=1, diff_type=DifferenceTypes.S2_MISSING>
## ]

differences_in_labels = check_for_differences(
    ['B-PERSON', 'I-PERSON', 'O', 'O', 'B-POSITION', 'O'],
    ['B-PERSON', 'B-PERSON', 'O', 'O', 'B-POSITION', 'O']
)

## differences_in_labels.has_diffs == True
## differences_in_labels.diffs_between_labels == [
##      <Difference index=1, diff_type=DifferenceTypes.MISMATCH>
## ]

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

extr-ds-0.0.86.tar.gz (15.5 kB view details)

Uploaded Source

Built Distribution

extr_ds-0.0.86-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file extr-ds-0.0.86.tar.gz.

File metadata

  • Download URL: extr-ds-0.0.86.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.1

File hashes

Hashes for extr-ds-0.0.86.tar.gz
Algorithm Hash digest
SHA256 4fc0b0dafccc1d34792f53ff0fdd651285e3d3817979217b0247722e9313bf37
MD5 3c4e7c4afd3bf2640813aa66598f5477
BLAKE2b-256 3667c2b7862b04645cd562b5e36cc1c659742e32f68ca48d6f08ac22dd1e6961

See more details on using hashes here.

File details

Details for the file extr_ds-0.0.86-py3-none-any.whl.

File metadata

  • Download URL: extr_ds-0.0.86-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.1

File hashes

Hashes for extr_ds-0.0.86-py3-none-any.whl
Algorithm Hash digest
SHA256 7d6ffdb11bc8e019a382ecb5bbf18e7b557e186ca443c313ca59c5befb214221
MD5 27daf69bbcc9a7056ca489e9fbe866fc
BLAKE2b-256 6687cc19d9abfffc3f85da513a68ddcf875dbd3250dcc23278e8f6a57a43b7c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page