Skip to main content
Donate to the Python Software Foundation or Purchase a PyCharm License to Benefit the PSF! Donate Now

A set of tools to aid in the identification of false positive variants in Variant Call Files.

Project description

ExtremeVariantFilter

Extreme Variant Filter is a set of tools developed to aid in the identification of false positive variants in Genomic Variant Call Files based on XGBoost.

Functions

apply_filter

Usage:
    apply_filter (--vcf STR) (--snp-model STR) (--indel-model STR) [--verbose]

Description:
    Apply models generated by train_model to a VCF.

Arguments:
    --vcf STR                     VCF to be filtered
    --snp-model STR               Model for applying to SNPs
    --indel-model INT             Model for applying to InDels

Options:
    -h, --help                      Show this help message and exit.
    -v, --version                   Show version and exit.
    --verbose                       Log output

Examples:
    apply_filter --vcf <table> --snp-model <snp.pickle.dat> --indel-model <indel.pickle.dat>

train_model

Usage:
    train_model (--true-pos STR) (--false-pos STR) (--type STR) [--out STR] [--njobs INT] [--verbose]

Description:
    Train a model to be saved and used to filter VCFs.

Arguments:
    --true-pos STR          Path to true-positive VCF from VCFeval or comma-seperated list of paths
    --false-pos STR         Path to false-positive VCF from VCFeval or comma-seperated list of paths
    --type STR              SNP or INDEL

Options:
    -o, --out <STR>                 Outfile name for writing model [default: (type).filter.pickle.dat]
    -n, --njobs <INT>               Number of threads to run in parallel [default: 2]
    -h, --help                      Show this help message and exit.
    -v, --version                   Show version and exit.
    --verbose                       Log output

Examples:
    train_table --true-pos <path/to/tp/vcf(s)> --false-pos <path/to/fp/vcf(s)> --type [SNP, INDEL] --njobs 20

Install

To install and run EVF simply type:

pip install extremevariantfilter

Alternatively, clone this repo and build using the following commands:

git clone https://github.com/stLFR/extremevariantfilter.git
cd extremevariantfilter
pip install .

stLFR Paper Results

If you'd like to use this tool to corroborate the results from the stLFR Paper on Bioarxiv paper, the models used for variant filtering are available within the models/ directory. In order to get identical results, after installation, use the command pip install -r requirements.txt from within this directory to ensure your environment matches the one we used for our results. Different versions of certain packages will result in variable results.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
extremevariantfilter-0.0a4-py2-none-any.whl (11.6 kB) Copy SHA256 hash SHA256 Wheel py2
extremevariantfilter-0.0a4.tar.gz (2.7 MB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page