Skip to main content

Exa - Pytorch

Project description

Multi-Modality

Exa

Ultra-optimized fast inference library for running exascale LLMs locally on modern consumer-class GPUs.

Principles

  • Radical Simplicity (Utilizing super-powerful LLMs with as minimal code as possible)
  • Ultra-Optimizated (High Performance classes that extract all the power from these LLMs)
  • Fludity & Shapelessness (Plug in and play and re-architecture as you please)

🤝 Schedule a 1-on-1 Session

Book a 1-on-1 Session with Kye, the Creator, to discuss any issues, provide feedback, or explore how we can improve Zeta for you.


📦 Installation 📦

You can install the package using pip

pip install exxa

Usage

Inference

from exa import Inference

model = Inference(
    model_id="georgesung/llama2_7b_chat_uncensored",
    quantized=True
)

model.run("What is your name")

GPTQ Inference

from exa import GPTQInference

model_id = "facebook/opt-125m"
model = GPTQInference(model_id=model_id, max_length=400)

prompt = "in a land far far away"
result = model.run(prompt)
print(result)

Quantize

from exa import Quantize

#usage
quantize = Quantize(
     model_id="bigscience/bloom-1b7",
     bits=8,
     enable_fp32_cpu_offload=True,
)

quantize.load_model()
quantize.push_to_hub("my model")
quantize.load_from_hub('my model')

🎉 Features 🎉

  • World-Class Quantization: Get the most out of your models with top-tier performance and preserved accuracy! 🏋️‍♂️

  • Automated PEFT: Simplify your workflow! Let our toolkit handle the optimizations. 🛠️

  • LoRA Configuration: Dive into the potential of flexible LoRA configurations, a game-changer for performance! 🌌

  • Seamless Integration: Designed to work seamlessly with popular models like LLAMA, Falcon, and more! 🤖


💌 Feedback & Contributions 💌

We're excited about the journey ahead and would love to have you with us! For feedback, suggestions, or contributions, feel free to open an issue or a pull request. Let's shape the future of fine-tuning together! 🌱


License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

exxa-0.0.2.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

exxa-0.0.2-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file exxa-0.0.2.tar.gz.

File metadata

  • Download URL: exxa-0.0.2.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0

File hashes

Hashes for exxa-0.0.2.tar.gz
Algorithm Hash digest
SHA256 8ecaeb6d6dcf4ec4578ab2e170dc0673b773117ea663cdb0be485ff66da8715d
MD5 d9e65d0a9e840251a99e119264d61723
BLAKE2b-256 c7491609fa41aab420da0c98611a24e3799fb62817e498a6ab254661799d445c

See more details on using hashes here.

File details

Details for the file exxa-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: exxa-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0

File hashes

Hashes for exxa-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3282d873c47f46a5fb7b9b47f61afd9675fe0ef29c257cc902389cc5ab0187f2
MD5 bfa9ab09f343bec28f214cd24b596ae7
BLAKE2b-256 b7f894688438f3eb44c54fdefb7919640b0eb2e85af1ed9153523715f8fe957e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page