Skip to main content

Exa - Pytorch

Project description

Multi-Modality

Exa

Boost your GPU's LLM performance by 300% on everyday GPU hardware, as validated by renowned developers, in just 5 minutes of setup and with no additional hardware costs.


Principles

  • Radical Simplicity (Utilizing super-powerful LLMs with as minimal lines of code as possible)
  • Ultra-Optimizated Peformance (High Performance code that extract all the power from these LLMs)
  • Fludity & Shapelessness (Plug in and play and re-architecture as you please)

🤝 Schedule a 1-on-1 Session

Book a 1-on-1 Session with Kye, the Creator, to discuss any issues, provide feedback, or explore how we can improve Exa for you.


📦 Installation 📦

You can install the package using pip

pip install exxa

Usage

Inference

Generate text using pretrained models with optional quantization with minimal configuration and straightforward usage.

  • Load specified pre-trained models with device flexibility (CPU/CUDA).
  • Set a default maximum length for the generated sequences.
  • Choose to quantize model weights for faster inference.
  • Use a custom configuration for quantization as needed.
  • Generate text through either a direct call or the run method.
  • Simple usage for quick text generation based on provided prompts.
from exa import Inference

model = Inference(
    model_id="georgesung/llama2_7b_chat_uncensored",
    quantize=True
)

model.run("What is your name")

GPTQ Inference

Efficiently generate text using quantized GPT-like models built for HuggingFace's pre-trained models with optional quantization and only a few lines of code for instantiation and generation.

  • Load specified pre-trained models with an option for quantization.
  • Define custom bit depth for the quantization (default is 4 bits).
  • Fine-tune quantization parameters using specific datasets.
  • Set maximum length for generated sequences to maintain consistency.
  • Tokenize prompts and generate text based on them seamlessly.
# !pip install exxa
from exa import GPTQInference

model_id = "gpt2-medium"
inference = GPTQInference(
    model_id, 
    quantization_config_bits=2, 
    max_length=400, 
    quantization_config_dataset='c4'
)
output_text = inference.run("The future of AI is")
print(output_text)

Quantize

Achieve smaller model sizes and faster inference by utilizing a unified interface tailored to HuggingFace's framework and only a simple class instantiation with multiple parameters is needed.

  • Efficiently quantize HuggingFace's pretrained models with specified bits (default is 4 bits).
  • Set custom thresholds for quantization for precision management.
  • Ability to skip specific modules during quantization for sensitive model parts.
  • Offload parts of the model to CPU in FP32 format for GPU memory management.
  • Specify if model weights are already in FP16 format.
  • Choose from multiple quantization types like "fp4", "int8", and more.
  • Option to enable double quantization for more compression.
  • Verbose logging for a detailed understanding of the quantization process.
  • Seamlessly push to and load models from the HuggingFace model hub.
  • In-built logger initialization tailored for quantization logs.
  • Log metadata for state and settings introspection.
from exa import Quantize

#usage
quantize = Quantize(
     model_id="bigscience/bloom-1b7",
     bits=8,
     enable_fp32_cpu_offload=True,
)

quantize.load_model()
quantize.push_to_hub("my model")
quantize.load_from_hub('my model')

🎉 Features 🎉

  • World-Class Quantization: Get the most out of your models with top-tier performance and preserved accuracy! 🏋️‍♂️

  • Automated PEFT: Simplify your workflow! Let our toolkit handle the optimizations. 🛠️

  • LoRA Configuration: Dive into the potential of flexible LoRA configurations, a game-changer for performance! 🌌

  • Seamless Integration: Designed to work seamlessly with popular models like LLAMA, Falcon, and more! 🤖


💌 Feedback & Contributions 💌

We're excited about the journey ahead and would love to have you with us! For feedback, suggestions, or contributions, feel free to open an issue or a pull request. Let's shape the future of fine-tuning together! 🌱

Check out our project board for our current backlog and features we're implementing


Benchmarks

The following is what we benchmark for according to the 🤗 LLM-Perf Leaderboard 🏋️ benchmarks

Metrics

  • Backend 🏭
  • Dtype 📥
  • Optimizations 🛠️
  • Quantization 🗜️
  • Class 🏋️
  • Type 🤗
  • Memory (MB) ⬇️
  • Throughput (tokens/s) ⬆️
  • Energy (tokens/kWh) ⬇️
  • Best Score (%) ⬆️
  • Best Scored LLM 🏆

License

MIT

Todo

  • Setup utils logger classes for metric logging with useful metadata such as token inference per second, latency, memory consumption
  • Add cuda c++ extensions for radically optimized classes for high performance quantization + inference on the edge

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

exxa-0.4.2.tar.gz (20.2 kB view details)

Uploaded Source

Built Distribution

exxa-0.4.2-py3-none-any.whl (22.7 kB view details)

Uploaded Python 3

File details

Details for the file exxa-0.4.2.tar.gz.

File metadata

  • Download URL: exxa-0.4.2.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0

File hashes

Hashes for exxa-0.4.2.tar.gz
Algorithm Hash digest
SHA256 c0a06679f11368a7765b66c47c4ff86dc123ce5ae485709633a64a166f0da20c
MD5 fa1b93818803eace04e2c027de400a89
BLAKE2b-256 ce7ed86bf4b4cc6e97e6ee6bd2861d4372243242e9199ad0b2abf62332743492

See more details on using hashes here.

File details

Details for the file exxa-0.4.2-py3-none-any.whl.

File metadata

  • Download URL: exxa-0.4.2-py3-none-any.whl
  • Upload date:
  • Size: 22.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0

File hashes

Hashes for exxa-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 935353e2e4d133a4f1a222fd4a03fc8cc848431a52d06da0770f503cf70828a2
MD5 4ff90b5c7bcf5952b773e8035a455845
BLAKE2b-256 828c54729fe7fb6a840cca74a217d0e39c0fbe193ad6eeed1585b839f6c088f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page