Skip to main content

Advanced pipelines for video datasets

Project description

Bumblebee

PyPI Downloads
Bumblebee image

Bumblebee provides high level components to construct training pipelines for videos conveniently.

Install

pip install eyecu_bumblebee

Motivation

Everything should be made as simple as possible, but no simpler. - Albert Einstein

Our Websites

EyeCU Vision
EyeCU Future

Examples

A pipeline with basic elements

from bumblebee import *


if __name__ == "__main__":
    
    video_path = "/path/to/video.mp4"

    # Create a source
    file_stream = sources.FileStream(video_path)

    # Add an effect
    goto = effects.GoTo(file_stream)

    END_OF_VIDEO = file_stream.get_duration()
    goto(END_OF_VIDEO)

    # Create a dataset
    single_frame = datasets.Single(file_stream)

    last_frame = single_frame.read()

Using Manager API

from bumblebee import *


if __name__ == "__main__":
    
    # Create a training manager
    manager = managers.BinaryClassification(
        ["path/to/video_dir","path/to/another_dir"],
        ["path/to/labels"]
    )

    number_of_epochs = 300
    
    for epoch,(frame_no,frame,prob) in manager(number_of_epochs):
        # Use data stuff
        ...    

Read limited section of video

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    start_frame = 35
    end_frame = 40
    
    file_stream = sources.FileStream(video_path)
    
    limited_stream = effects.Start(file_stream,start_frame)
    limited_stream = effects.End(limited_stream,end_frame)

    single_frame = datasets.Single(file_stream)

    for frame in single_frame:
        ...  

Iterate frames with frame numbers

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    
    file_stream = sources.FileStream(video_path)
    
    single_frame = datasets.Single(file_stream)
    current_frame = effects.CurrentFrame(file_stream)
    
    
    for frame_ind,frame in zip(current_frame,single_frame):
        ...  

Iterate frames in batches

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    batch_size = 64
    
    file_stream = sources.FileStream(video_path)
    
    batch = datasets.Batch(file_stream)
    
    for frames in batch:
        ...  

Team

This project is currently developed and maintained by ovuruska.

License

Bumblebee has MIT license. You can find further details in LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eyecu-bumblebee-0.5.7.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

eyecu_bumblebee-0.5.7-py3-none-any.whl (16.0 kB view details)

Uploaded Python 3

File details

Details for the file eyecu-bumblebee-0.5.7.tar.gz.

File metadata

  • Download URL: eyecu-bumblebee-0.5.7.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.6 Windows/10

File hashes

Hashes for eyecu-bumblebee-0.5.7.tar.gz
Algorithm Hash digest
SHA256 300e175841570be999778cea5c54124e731b65d55b027608610bd6688b680bdb
MD5 30a340631d039501bf8f659a964543ec
BLAKE2b-256 d46161dfa78d28c69e0230786d81a5b10d0abd8e2b40e40b3cc9608cad2bd186

See more details on using hashes here.

File details

Details for the file eyecu_bumblebee-0.5.7-py3-none-any.whl.

File metadata

File hashes

Hashes for eyecu_bumblebee-0.5.7-py3-none-any.whl
Algorithm Hash digest
SHA256 b5f6de808eade5fdb2c4aaf998656b19cfa3414cf307e9bd62d2658179a045c2
MD5 57c3ab0414f3c627971eaa5bb1162124
BLAKE2b-256 a39746e17444b2f33ef7052af7064796be1075b4157686c2d4fa210a50f86d1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page