Skip to main content

Advanced pipelines for video datasets

Project description

Bumblebee

PyPI Downloads
Bumblebee image

Bumblebee provides high level components to construct training pipelines for videos conveniently.

Install

pip install eyecu_bumblebee

Motivation

Everything should be made as simple as possible, but no simpler. - Albert Einstein

Our Websites

EyeCU Vision
EyeCU Future

Examples

A pipeline with basic elements

from bumblebee import *


if __name__ == "__main__":
    
    video_path = "/path/to/video.mp4"

    # Create a source
    file_stream = sources.FileStream(video_path)

    # Add an effect
    goto = effects.GoTo(file_stream)

    END_OF_VIDEO = file_stream.get_duration()
    goto(END_OF_VIDEO)

    # Create a dataset
    single_frame = datasets.Single(file_stream)

    last_frame = single_frame.read()

Using Manager API

from bumblebee import *


if __name__ == "__main__":
    
    # Create a training manager
    manager = managers.BinaryClassification(
        ["path/to/video_dir","path/to/another_dir"],
        ["path/to/labels"]
    )

    number_of_epochs = 300
    
    for epoch,(frame_no,frame,prob) in manager(number_of_epochs):
        # Use data stuff
        ...    

Read limited section of video

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    start_frame = 35
    end_frame = 40
    
    file_stream = sources.FileStream(video_path)
    
    limited_stream = effects.Start(file_stream,start_frame)
    limited_stream = effects.End(limited_stream,end_frame)

    single_frame = datasets.Single(file_stream)

    for frame in single_frame:
        ...  

Iterate frames with frame numbers

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    
    file_stream = sources.FileStream(video_path)
    
    single_frame = datasets.Single(file_stream)
    current_frame = effects.CurrentFrame(file_stream)
    
    
    for frame_ind,frame in zip(current_frame,single_frame):
        ...  

Iterate frames in batches

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    batch_size = 64
    
    file_stream = sources.FileStream(video_path)
    
    batch = datasets.Batch(file_stream)
    
    for frames in batch:
        ...  

Team

This project is currently developed and maintained by ovuruska.

License

Bumblebee has MIT license. You can find further details in LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eyecu-bumblebee-0.4.10.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

eyecu_bumblebee-0.4.10-py3-none-any.whl (14.5 kB view details)

Uploaded Python 3

File details

Details for the file eyecu-bumblebee-0.4.10.tar.gz.

File metadata

  • Download URL: eyecu-bumblebee-0.4.10.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.9.0 Windows/10

File hashes

Hashes for eyecu-bumblebee-0.4.10.tar.gz
Algorithm Hash digest
SHA256 4f9a93c023a300bbb44027c1f675f6a2de783a9dea2d0e0f671fd9c64631a417
MD5 676726cfb50001b17aed3ced7e9ca5e1
BLAKE2b-256 13888e0737f1219a937ef6bd7aaad4a0a8f31a08dd6db1af74ac6337c34e1fe2

See more details on using hashes here.

File details

Details for the file eyecu_bumblebee-0.4.10-py3-none-any.whl.

File metadata

File hashes

Hashes for eyecu_bumblebee-0.4.10-py3-none-any.whl
Algorithm Hash digest
SHA256 a764f49074533efd46e962bce1013cb5d0f55d963b895402b204aad1212aa18f
MD5 dde036424e5ef48846190bcad119463a
BLAKE2b-256 98b8c9dc431a55c07d6ee6245b1df1621e72bd988452fb34dc6e5302df5bded3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page