Skip to main content

Advanced pipelines for video datasets

Project description

Bumblebee

PyPI Downloads
Bumblebee image

Bumblebee provides high level components to construct training pipelines for videos conveniently.

Install

pip install eyecu_bumblebee

Motivation

Everything should be made as simple as possible, but no simpler. - Albert Einstein

Our Websites

EyeCU Vision
EyeCU Future

Examples

A pipeline with basic elements

from bumblebee import *


if __name__ == "__main__":
    
    video_path = "/path/to/video.mp4"

    # Create a source
    file_stream = sources.FileStream(video_path)

    # Add an effect
    goto = effects.GoTo(file_stream)

    END_OF_VIDEO = file_stream.get_duration()
    goto(END_OF_VIDEO)

    # Create a dataset
    single_frame = datasets.Single(file_stream)

    last_frame = single_frame.read()

Using Manager API

from bumblebee import *


if __name__ == "__main__":
    
    # Create a training manager
    manager = managers.BinaryClassification(
        ["path/to/video_dir","path/to/another_dir"],
        ["path/to/labels"]
    )

    number_of_epochs = 300
    
    for epoch,(frame_no,frame,prob) in manager(number_of_epochs):
        # Use data stuff
        ...    

Read limited section of video

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    start_frame = 35
    end_frame = 40
    
    file_stream = sources.FileStream(video_path)
    
    limited_stream = effects.Start(file_stream,start_frame)
    limited_stream = effects.End(limited_stream,end_frame)

    single_frame = datasets.Single(file_stream)

    for frame in single_frame:
        ...  

Iterate frames with frame numbers

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    
    file_stream = sources.FileStream(video_path)
    
    single_frame = datasets.Single(file_stream)
    current_frame = effects.CurrentFrame(file_stream)
    
    
    for frame_ind,frame in zip(current_frame,single_frame):
        ...  

Iterate frames in batches

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    batch_size = 64
    
    file_stream = sources.FileStream(video_path)
    
    batch = datasets.Batch(file_stream)
    
    for frames in batch:
        ...  

Team

This project is currently developed and maintained by ovuruska.

License

Bumblebee has MIT license. You can find further details in LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eyecu-bumblebee-0.4.13.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

eyecu_bumblebee-0.4.13-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file eyecu-bumblebee-0.4.13.tar.gz.

File metadata

  • Download URL: eyecu-bumblebee-0.4.13.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.9.0 Windows/10

File hashes

Hashes for eyecu-bumblebee-0.4.13.tar.gz
Algorithm Hash digest
SHA256 379638bc87b50be5e8dcc8e2f5f846b40be06e51355867ec9ff81c9ba6f8c422
MD5 f50cb22e384b6ad353e4cdd1e3150154
BLAKE2b-256 9d4ad0846e9bb8fc3cf25959d1905378ffde56c7c96da060924a1da3b73cdb0b

See more details on using hashes here.

File details

Details for the file eyecu_bumblebee-0.4.13-py3-none-any.whl.

File metadata

File hashes

Hashes for eyecu_bumblebee-0.4.13-py3-none-any.whl
Algorithm Hash digest
SHA256 a38863059fc31919da227c2cdba2f5532dee22366cfd0ca8131b484eaad32423
MD5 79f9b930a4ec7048414fff78a990c575
BLAKE2b-256 83f977ed8031b3ad5cdfc017c3d3f83be34ab3b536263c023e5db1fe7d032d91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page