Skip to main content

Advanced pipelines for video datasets

Project description

Bumblebee

PyPI Downloads
Bumblebee image

Bumblebee provides high level components to construct training pipelines for videos conveniently.

Install

pip install eyecu_bumblebee

Motivation

Everything should be made as simple as possible, but no simpler. - Albert Einstein

Our Websites

EyeCU Vision
EyeCU Future

Examples

A pipeline with basic elements

from bumblebee import *


if __name__ == "__main__":
    
    video_path = "/path/to/video.mp4"

    # Create a source
    file_stream = sources.FileStream(video_path)

    # Add an effect
    goto = effects.GoTo(file_stream)

    END_OF_VIDEO = file_stream.get_duration()
    goto(END_OF_VIDEO)

    # Create a dataset
    single_frame = datasets.Single(file_stream)

    last_frame = single_frame.read()

Using Manager API

from bumblebee import *


if __name__ == "__main__":
    
    # Create a training manager
    manager = managers.BinaryClassification(
        ["path/to/video_dir","path/to/another_dir"],
        ["path/to/labels"]
    )

    number_of_epochs = 300
    
    for epoch,(frame_no,frame,prob) in manager(number_of_epochs):
        # Use data stuff
        ...    

Read limited section of video

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    start_frame = 35
    end_frame = 40
    
    file_stream = sources.FileStream(video_path)
    
    limited_stream = effects.Start(file_stream,start_frame)
    limited_stream = effects.End(limited_stream,end_frame)

    single_frame = datasets.Single(file_stream)

    for frame in single_frame:
        ...  

Iterate frames with frame numbers

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    
    file_stream = sources.FileStream(video_path)
    
    single_frame = datasets.Single(file_stream)
    current_frame = effects.CurrentFrame(file_stream)
    
    
    for frame_ind,frame in zip(current_frame,single_frame):
        ...  

Iterate frames in batches

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    batch_size = 64
    
    file_stream = sources.FileStream(video_path)
    
    batch = datasets.Batch(file_stream)
    
    for frames in batch:
        ...  

Team

This project is currently developed and maintained by ovuruska.

License

Bumblebee has MIT license. You can find further details in LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eyecu-bumblebee-0.4.14.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

eyecu_bumblebee-0.4.14-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file eyecu-bumblebee-0.4.14.tar.gz.

File metadata

  • Download URL: eyecu-bumblebee-0.4.14.tar.gz
  • Upload date:
  • Size: 11.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.9.0 Windows/10

File hashes

Hashes for eyecu-bumblebee-0.4.14.tar.gz
Algorithm Hash digest
SHA256 fa72e2291ddd0b5dbb66c5d38205fd34981476eba8895afa93003ae74471e854
MD5 c67b661a0c0a9592cdbb4d05128a37a4
BLAKE2b-256 fa0e198abb145258008d0bb2509bec044bfce81f1ed7ac0c28fa12cfd7b2a0de

See more details on using hashes here.

File details

Details for the file eyecu_bumblebee-0.4.14-py3-none-any.whl.

File metadata

File hashes

Hashes for eyecu_bumblebee-0.4.14-py3-none-any.whl
Algorithm Hash digest
SHA256 2ce4000d329f18b35a575477382eafd44f15013751ef2969d7cf3fc25f15d756
MD5 b290f8f2101c9731ca55396b35de7b2f
BLAKE2b-256 237b69a61195acd8e995fd531972af11823e95a254a76b307352f1ff63ecb7e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page