Skip to main content

Advanced pipelines for video datasets

Project description

Bumblebee

PyPI Downloads
Bumblebee image

Bumblebee provides high level components to construct training pipelines for videos conveniently.

Install

pip install eyecu_bumblebee

Motivation

Everything should be made as simple as possible, but no simpler. - Albert Einstein

Our Websites

EyeCU Vision
EyeCU Future

Examples

A pipeline with basic elements

from bumblebee import *


if __name__ == "__main__":
    
    video_path = "/path/to/video.mp4"

    # Create a source
    file_stream = sources.FileStream(video_path)

    # Add an effect
    goto = effects.GoTo(file_stream)

    END_OF_VIDEO = file_stream.get_duration()
    goto(END_OF_VIDEO)

    # Create a dataset
    single_frame = datasets.Single(file_stream)

    last_frame = single_frame.read()

Using Manager API

from bumblebee import *


if __name__ == "__main__":
    
    # Create a training manager
    manager = managers.BinaryClassification(
        ["path/to/video_dir","path/to/another_dir"],
        ["path/to/labels"]
    )

    number_of_epochs = 300
    
    for epoch,(frame_no,frame,prob) in manager(number_of_epochs):
        # Use data stuff
        ...    

Read limited section of video

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    start_frame = 35
    end_frame = 40
    
    file_stream = sources.FileStream(video_path)
    
    limited_stream = effects.Start(file_stream,start_frame)
    limited_stream = effects.End(limited_stream,end_frame)

    single_frame = datasets.Single(file_stream)

    for frame in single_frame:
        ...  

Iterate frames with frame numbers

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    
    file_stream = sources.FileStream(video_path)
    
    single_frame = datasets.Single(file_stream)
    current_frame = effects.CurrentFrame(file_stream)
    
    
    for frame_ind,frame in zip(current_frame,single_frame):
        ...  

Iterate frames in batches

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    batch_size = 64
    
    file_stream = sources.FileStream(video_path)
    
    batch = datasets.Batch(file_stream)
    
    for frames in batch:
        ...  

Team

This project is currently developed and maintained by ovuruska.

License

Bumblebee has MIT license. You can find further details in LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eyecu-bumblebee-0.4.6.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

eyecu_bumblebee-0.4.6-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file eyecu-bumblebee-0.4.6.tar.gz.

File metadata

  • Download URL: eyecu-bumblebee-0.4.6.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.9.0 Windows/10

File hashes

Hashes for eyecu-bumblebee-0.4.6.tar.gz
Algorithm Hash digest
SHA256 6a3de50ec8ec713015d68e7354f1ce72aa1d315276c789a70ef4c04578fe7bbe
MD5 134321ee3093435d7ebe98e4f601e723
BLAKE2b-256 9d1baa01895caae44a47a973f45518e7c708202f5dd58a98717b2ee3b72144f5

See more details on using hashes here.

File details

Details for the file eyecu_bumblebee-0.4.6-py3-none-any.whl.

File metadata

File hashes

Hashes for eyecu_bumblebee-0.4.6-py3-none-any.whl
Algorithm Hash digest
SHA256 b3a1b2f9f51e8b5114cc0d8804c7b131c708ca30caf8e37da629f25dac1ba7a6
MD5 746532fd6bd3661cd1f5c87180cbeb7f
BLAKE2b-256 0ecb135c77f5ce0699128f0aec6dfce9f176df3271472e20d2d07eaf81afbb1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page