Skip to main content

Advanced pipelines for video datasets

Project description

Bumblebee

PyPI Downloads
Bumblebee image

Bumblebee provides high level components to construct training pipelines for videos conveniently.

Install

pip install eyecu_bumblebee

Motivation

Everything should be made as simple as possible, but no simpler. - Albert Einstein

Our Websites

EyeCU Vision
EyeCU Future

Examples

A pipeline with basic elements

from bumblebee import *


if __name__ == "__main__":
    
    video_path = "/path/to/video.mp4"

    # Create a source
    file_stream = sources.FileStream(video_path)

    # Add an effect
    goto = effects.GoTo(file_stream)

    END_OF_VIDEO = file_stream.get_duration()
    goto(END_OF_VIDEO)

    # Create a dataset
    single_frame = datasets.Single(file_stream)

    last_frame = single_frame.read()

Using Manager API

from bumblebee import *


if __name__ == "__main__":
    
    # Create a training manager
    manager = managers.BinaryClassification(
        ["path/to/video_dir","path/to/another_dir"],
        ["path/to/labels"]
    )

    number_of_epochs = 300
    
    for epoch,(frame_no,frame,prob) in manager(number_of_epochs):
        # Use data stuff
        ...    

Read limited section of video

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    start_frame = 35
    end_frame = 40
    
    file_stream = sources.FileStream(video_path)
    
    limited_stream = effects.Start(file_stream,start_frame)
    limited_stream = effects.End(limited_stream,end_frame)

    single_frame = datasets.Single(file_stream)

    for frame in single_frame:
        ...  

Iterate frames with frame numbers

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    
    file_stream = sources.FileStream(video_path)
    
    single_frame = datasets.Single(file_stream)
    current_frame = effects.CurrentFrame(file_stream)
    
    
    for frame_ind,frame in zip(current_frame,single_frame):
        ...  

Iterate frames in batches

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    batch_size = 64
    
    file_stream = sources.FileStream(video_path)
    
    batch = datasets.Batch(file_stream)
    
    for frames in batch:
        ...  

Team

This project is currently developed and maintained by ovuruska.

License

Bumblebee has MIT license. You can find further details in LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eyecu-bumblebee-0.5.1.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

eyecu_bumblebee-0.5.1-py3-none-any.whl (15.9 kB view details)

Uploaded Python 3

File details

Details for the file eyecu-bumblebee-0.5.1.tar.gz.

File metadata

  • Download URL: eyecu-bumblebee-0.5.1.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.9.0 Windows/10

File hashes

Hashes for eyecu-bumblebee-0.5.1.tar.gz
Algorithm Hash digest
SHA256 54528fef6d7c94c5494c105c5498e1711154f52fc2bda1e898db3cec791b66be
MD5 a78694330f5acc24006c873c10edab71
BLAKE2b-256 dd839073204b34de029d1c60518152ba4c643bade9afeb2593673881762a831e

See more details on using hashes here.

File details

Details for the file eyecu_bumblebee-0.5.1-py3-none-any.whl.

File metadata

File hashes

Hashes for eyecu_bumblebee-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6b690de9f4405030f656b6f9691d8732cc0e95326a4ae2482d9e8e0802b1970b
MD5 928c923f2e490a7be6a33150ccbccc9d
BLAKE2b-256 51829ecc6c1a3f6b4e88bb080264036450d9b7ecf45d302de99baf9c742cddaf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page