Skip to main content

Advanced pipelines for video datasets

Project description

Bumblebee

PyPI Downloads
Bumblebee image

Bumblebee provides high level components to construct training pipelines for videos conveniently.

Install

pip install eyecu_bumblebee

Motivation

Everything should be made as simple as possible, but no simpler. - Albert Einstein

Our Websites

EyeCU Vision
EyeCU Future

Examples

A pipeline with basic elements

from bumblebee import *


if __name__ == "__main__":
    
    video_path = "/path/to/video.mp4"

    # Create a source
    file_stream = sources.FileStream(video_path)

    # Add an effect
    goto = effects.GoTo(file_stream)

    END_OF_VIDEO = file_stream.get_duration()
    goto(END_OF_VIDEO)

    # Create a dataset
    single_frame = datasets.Single(file_stream)

    last_frame = single_frame.read()

Using Manager API

from bumblebee import *


if __name__ == "__main__":
    
    # Create a training manager
    manager = managers.BinaryClassification(
        ["path/to/video_dir","path/to/another_dir"],
        ["path/to/labels"]
    )

    number_of_epochs = 300
    
    for epoch,(frame_no,frame,prob) in manager(number_of_epochs):
        # Use data stuff
        ...    

Read limited section of video

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    start_frame = 35
    end_frame = 40
    
    file_stream = sources.FileStream(video_path)
    
    limited_stream = effects.Start(file_stream,start_frame)
    limited_stream = effects.End(limited_stream,end_frame)

    single_frame = datasets.Single(file_stream)

    for frame in single_frame:
        ...  

Iterate frames with frame numbers

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    
    file_stream = sources.FileStream(video_path)
    
    single_frame = datasets.Single(file_stream)
    current_frame = effects.CurrentFrame(file_stream)
    
    
    for frame_ind,frame in zip(current_frame,single_frame):
        ...  

Iterate frames in batches

from bumblebee import *


if __name__ == "__main__":
  
    video_path = "/path/to/video.mp4"
    batch_size = 64
    
    file_stream = sources.FileStream(video_path)
    
    batch = datasets.Batch(file_stream)
    
    for frames in batch:
        ...  

Team

This project is currently developed and maintained by ovuruska.

License

Bumblebee has MIT license. You can find further details in LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eyecu-bumblebee-0.5.6.tar.gz (11.8 kB view details)

Uploaded Source

Built Distribution

eyecu_bumblebee-0.5.6-py3-none-any.whl (16.0 kB view details)

Uploaded Python 3

File details

Details for the file eyecu-bumblebee-0.5.6.tar.gz.

File metadata

  • Download URL: eyecu-bumblebee-0.5.6.tar.gz
  • Upload date:
  • Size: 11.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.9.0 Windows/10

File hashes

Hashes for eyecu-bumblebee-0.5.6.tar.gz
Algorithm Hash digest
SHA256 95d33089d79aeaf30aed2daab42425d0c9d256ed29c3cfdefa4b34c90ea4d40d
MD5 0607c027da966f18207d9b10514696de
BLAKE2b-256 8da37d6bbf7bc1dafa5b805cdaff87ce5e7655460c8eaee444ff3526a7255e81

See more details on using hashes here.

File details

Details for the file eyecu_bumblebee-0.5.6-py3-none-any.whl.

File metadata

File hashes

Hashes for eyecu_bumblebee-0.5.6-py3-none-any.whl
Algorithm Hash digest
SHA256 2b465f09d787af356c4497615a1d05af51415f6c012cc55f8c4be61d8e00fc33
MD5 e040128be07d53cdd625e0c6e691ac61
BLAKE2b-256 7604d34c784e6ef5afd92a043eab817c3e1c80060dd7e6631a385793a92f8e09

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page