Skip to main content

Easy Parallel Multiprocessing

Project description

ez-parallel

Build status Python Version Dependencies Status codecov

Code style: black Security: bandit Pre-commit Semantic Versions License

Easy Parallel Multiprocessing

Installation

With pip or pip3:

pip install -U ez-parallel

or

pip install ez-parallel

With Poetry:

poetry add ez-parallel

Usage

  • Process a list of items by using parallel workers
    • Define what a worker does
    • Define how to iterate through the data
    • Just run
  • Display a global progress bar
  • Does the same for multithread

Multithread vs Multiprocessing

In multiprocessing, new processes will be launched, they won't share memory. The user should implement a way to store the results of a worker and gather these results when multiprocess() returns.

With multithreading, new threads will be launched, they all share the memory of the parent process. This also restricts the runtime to a single CPU-core, as threads from a process do not get allocated to different cores. There will be no performance improvement when the distributed work is CPU-bound.

How to choose? (guidelines)

  • CPU-heavy (data transformation, data preprocessing): multiprocessing.
  • IO-heavy (DB requests, File I/O): multithreading.

Examples

How to process a list?

import time

from ez_parallel import list_iterator, queue_worker, multiprocess

@queue_worker
def work_one_thing(x: int) -> int:
  # do something
  a = x + 2
  time.sleep(0.1)
  
  # Worked on ONE thing = return 1
  return 1

# Data
things_to_process = list(range(1000000))

# Create the iterator over the things to process
iter_fn, nb_things = list_iterator(things_to_process)

# Process all the things in parallel with 20 processes
multiprocess(
  worker_fn=work_one_thing,
  input_iterator_fn=iter_fn,
  total=nb_things,
  nb_workers=20,
  description='Process the things'
)

How to Process a list by batch?

import time
from typing import List

from ez_parallel import batch_iterator_from_sliceable, queue_worker, multiprocess


@queue_worker
def work_one_thing(x: List[int]) -> int:
  # do something
  a = [y + 2 for y in x]
  time.sleep(0.1)
  
  # Worked on ONE thing = return 1
  return len(x)

# Data
things_to_process = list(range(1000000))

# Create the iterator over the things to process
# This will yield batches of 128 things
iter_fn = batch_iterator_from_sliceable(items=things_to_process, batch_size=128)
nb_things = len(things_to_process)

# Process all the things in parallel with 20 processes
multiprocess(
  worker_fn=work_one_thing,
  input_iterator_fn=iter_fn,
  total=nb_things,
  nb_workers=20,
  description='Process the things'
)

How to Process a list by batch in multithread?

import time
from typing import List

from ez_parallel import batch_iterator_from_sliceable, queue_worker, multithread


@queue_worker
def work_one_thing(x: List[int]) -> int:
  # do something
  a = [y + 2 for y in x]
  time.sleep(0.1)
  
  # Worked on ONE thing = return 1
  return len(x)

# Data
things_to_process = list(range(1000000))

# Create the iterator over the things to process
# This will yield batches of 128 things
iter_fn = batch_iterator_from_sliceable(items=things_to_process, batch_size=128)
nb_things = len(things_to_process)

# Process all the things in parallel with 20 processes
multithread(
  worker_fn=work_one_thing,
  input_iterator_fn=iter_fn,
  total=nb_things,
  nb_workers=20,
  description='Process the things'
)

How to collect results in multiprocessing?

(Suggestion using temporary files) In this scenario, results are recorded as JSONL files, the final result is the concatenation of all files.

import glob
import json
import os
import random
import shutil
import string
import tempfile
from typing import List

from ez_parallel import batch_iterator_from_sliceable, queue_worker, multithread


def random_file_name() -> str:
  return ''.join(random.choices(string.ascii_letters, k=32))  


# All processes write in the same file
# The OS will deal with concurrent access
tmp_file = os.path.join(tempfile.gettempdir(), random_file_name())

@queue_worker
def work_one_thing(x: List[int]) -> int:
  # This call is blocking until the file can be written
  with open(tmp_file, 'a') as out:
    for number in x:
      out.write(json.dumps({"number": number, "square": number ** 2}) + '\n')
  
  # Worked on ONE thing = return 1
  return len(x)

# Data
things_to_process = list(range(1000000))

# Create the iterator over the things to process
# This will yield batches of 128 things
iter_fn = batch_iterator_from_sliceable(items=things_to_process, batch_size=128)
nb_things = len(things_to_process)

# Process all the things in parallel with 20 processes
multithread(
  worker_fn=work_one_thing,
  input_iterator_fn=iter_fn,
  total=nb_things,
  nb_workers=20,
  description='Process the things'
)

# Collect all the data
with open(tmp_file, 'r') as src:
  data = [json.loads(line) for line in src] 

# Delete temporary file
os.remove(tmp_file)      

How to collect results in multithreading

A lot easier and straightforward, because all the threads share the same memory.

from typing import List

from ez_parallel import batch_iterator, queue_worker, multithread

# List are threadsafe in Python
results = []

@queue_worker
def work_one_thing(x: List[int]) -> int:
  # do something
  results.extend({"number": y, "square": y ** 2} for y in x)
  
  # Worked on ONE thing = return 1
  return len(x)

# Data
things_to_process = list(range(1000000))

# Create the iterator over the things to process
# This will yield batches of 128 things
iter_fn, nb_things = batch_iterator(items=things_to_process, batch_size=128)

# Process all the things in parallel with 20 processes
multithread(
  worker_fn=work_one_thing,
  input_iterator_fn=iter_fn,
  total=nb_things,
  nb_workers=20,
  description='Process the things'
)

print(len(results))

🛡 License

License

This project is licensed under the terms of the MIT license. See LICENSE for more details.

📃 Citation

@misc{ez-parallel,
  author = {Julien Rossi},
  title = {Easy Parallel Multiprocessing},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/j-rossi-nl/ez-parallel}}
}

Credits

This project was generated with python-package-template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ez-parallel-0.1.7.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

ez_parallel-0.1.7-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file ez-parallel-0.1.7.tar.gz.

File metadata

  • Download URL: ez-parallel-0.1.7.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.7.10 Linux/5.4.0-80-generic

File hashes

Hashes for ez-parallel-0.1.7.tar.gz
Algorithm Hash digest
SHA256 ad7d9fa3736632db6fa2a6733531cd00ce4b96e57ff0b77cd937cbae90583461
MD5 db73545bf828956892996614eeb6b4d9
BLAKE2b-256 29b5e90754ab85addca139db2218defdf0e7e3cfd446b3bff53276262ee52407

See more details on using hashes here.

File details

Details for the file ez_parallel-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: ez_parallel-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 9.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.7.10 Linux/5.4.0-80-generic

File hashes

Hashes for ez_parallel-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 deca70f618122f3967679d104c8a1b0137de5695a2a16e6b38b2e2363ff04622
MD5 735c1e5b857e2a69114c81f23c521dc0
BLAKE2b-256 b942c20554367a044c848e4cb846d9cb1f312979a8d0abbf9f4ab4ad62bae4c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page