Skip to main content

A webapp which can send beqcatalogue filters to a DSP device

Project description

ezbeq

A simple web browser for beqcatalogue which integrates with minidsp-rs for local remote control of a minidsp or HTP-1.

Setup

Windows / MacOS

Python is required so use an appropriate package manager to install it.

chocolatey is a convenient choice for Windows homebrew is the equivalent for MacOS

Linux

Use your distro package manager to install python.

Installation

Example is provided for rpi users

$ ssh pi@myrpi
$ sudo apt install python3 python3-venv python3-pip libyaml-dev
$ mkdir python
$ cd python
$ python3 -m venv ezbeq
$ cd ezbeq
$ . bin/activate
$ pip install ezbeq

Example Config Files

See examples

Type File
Camilla DSP ezbeq_camilladsp.yml
J River Media Center ezbeq_mc.yml
Minidsp 2x4HD ezbeq_md.yml, using multiple devices or with custom slot names
Minidsp 4x10 ezbeq_4x10.yml
Minidsp 10x10 without use of XO, with or using a custom mapping across input, output and xo
Minidsp DDRC-24 ezbeq_ddrc24.yml
Minidsp DDRC-88 ezbeq_ddrc88.yml
Minidsp HTx ezbeq_htx.yml
Minidsp SHD ezbeq_shd.yml
Monolith HTP-1 ezbeq_htp1.yml
Q-Sys ezbeq_qsys.yml
Multiple, different devices ezbeq_multi.yml

Using with a Minidsp

Install minidsp-rs as per the provided instructions

Using with a Monolith HTP-1

See the configuration section below

Upgrade

$ ssh pi@myrpi
$ cd python/ezbeq
$ . bin/activate
$ pip install --upgrade --force-reinstall ezbeq

then restart the app

Running the app manually

$ ssh pi@myrpi
$ cd python/ezbeq
$ . bin/activate
$ ./bin/ezbeq
  Loading config from /home/pi/.ezbeq/ezbeq.yml
  2021-01-16 08:43:15,374 - twisted - INFO - __init__ - Serving ui from /home/pi/python/ezbeq/lib/python3.8/site-packages/ezbeq/ui

Now open http://youripaddress:8080/index.html in your browser

Configuration

See $HOME/.ezbeq/ezbeq.yml

The only intended option for override is the port option which sets the port the UI and API is accessible on. This defaults to 8080.

Using a custom catalogue

If catalogueUrl is added to the configuration, e.g.

catalogueUrl: http://localhost:9999

ezbeq will instead load the catalogue from http://localhost:9999/database.json

This provides the ability to run ezbeq against a custom, or locally provided, catalogue.

Configuring Devices

The devices section contains a list of supported device, the format varies by the type of device and each item is a named device with the name subsequently appearing the UI (if multiple devices are listed)

Minidsp

Default values are shown, the only required value is the type field

  minidsp:
    cmdTimeout: 10
    exe: minidsp
    ignoreRetcode: false
    options: ''
    slotChangeDelay: false
    type: minidsp
  • cmdTime: default timeout in seconds for a command sent to minidsp-rs to complete
  • exe: location of the minidsp-rs executable
  • ignoreRetcode: if true, errors generated by minidsp-rs will be ignored (for debugging/local testing only)
  • options: additional command line switches to pass to minidsp-rs (refer to minidsp-rs docs for details)
  • type: minidsp
  • slotChangeDelay: if true, the command to change the slot is always sent to minidsp-rs as a separate command. If a positive integer or float, it represents an additional delay (in seconds) that will separate each command.

By default, it is assumed the Minidsp 2x4HD is in use. To use a different model, specify via the device_type option. For example:

  minidsp:
    cmdTimeout: 10
    exe: minidsp
    ignoreRetcode: false
    options: ''
    type: minidsp
    device_type: 4x10

In order for the ezbeq ui to update when the device status is updated outside of ezbeq (e.g. using minidsp remote control), additional configuration is required to enable the minidsp rs websocket interface

This requires 2 optional additional values in the configuration

  wsDeviceId: 0
  wsIp: 127.0.0.1:5380

wsIp is the address of the [http_server] from /etc/minidsp/config.toml wsDeviceId is the device id provided by minidsp probe, in this example 2 device ids (0 and 1) are available

$ minidsp probe                                                                                                                                                                                
Found 2x4HD with serial 911111 at ws://localhost/devices/0/ws [hw_id: 10, dsp_version: 100]
Found 2x4HD with serial 911112 at ws://localhost/devices/1/ws [hw_id: 10, dsp_version: 100]

Using, and controlling, multiple devices independently is supported but does require use of the options key in order to direct commands to the right device. Precise configuration of this option depends on the minidsp-rs setup so is out of scope of this readme. Typical configuration would involve use of the --tcp option combined with changes to minidsp.toml as mentioned in the minidsp-rs docs.

For reference, a community provided example configuration guide can be found via avs

Naming Slots

By default, the slots are numbered 1-4 as per the minidsp console.

To override, extend the device configuration with the slotNames key as illustrated in this example. It is not necessary to list every slot, just those that require an explicit name.

Minidsp Variants

Device support largely tracks minidsp-rs device support.

BEQ MV adjustments are applied to input peq channels only.

2x4HD

set device_type: 24HD

BEQ filters are written to both input channels.

Flex

configure as per 2x4HD

add slotChangeDelay: true to workaround issues with slow slot changing. If it remains unstable, use slotChangeDelay: 1.5 (or some other number, experiment to find the smallest value that enables a reliable experience).

Dirac mode (PEQ on output) is only supported at present via a custom configuration.

DDRC-24

set device_type: DDRC24

BEQ filters are written to all output channels.

DDRC-88

set device_type: DDRC88

BEQ filters are written to output channel 3 by default.

Add the sw_channels config key to override this, provide a list of channel indexes (0 based) to which the filters should be written. For example to write to the last two output channels:

device_type: DDRC88
sw_channels:
- 6
- 7
HTx

requires minidsp-rs 0.1.12 or later

set device_type: HTx

BEQ filters are written to output channel 3 by default.

Add the sw_channels config key to override this, provide a list of channel indexes (0 based) to which the filters should be written. For example to write to the last two output channels:

device_type: DDRC88
sw_channels:
- 6
- 7
4x10

set device_type: 4x10

The limited biquad capacity (5 per channel) means that filters are split across input and output channels and there is no capacity for user filters.

10x10

set device_type: 10x10

The limited biquad capacity (6 per channel) means that filters are split across input and output channels and the last 2 biquads per output channel are left under user control.

To avoid this, use the crossover biquads to hold the remaining beq biquads. This leaves the output PEQ untouched. Set use_xo to one of the following values to activate this mode:

  • all : apply beq to both crossover groups
  • 0 (or true) : apply beq to crossover group 0
  • 1 : apply beq to crossover group 1
SHD

set device_type: SHD

BEQ filters are written to all output channels.

8x12 CDSP

set device_type: 8x12CDSP

BEQ filters are written to all 6 input channels.

Custom Layouts

TODO

Monolith HTP1

  htp1:
    ip: 192.168.1.181
    channels:
    - sub1
    autoclear: true

BEQ filters are loaded into the bottom 10 slots of the specified channels only.

  • ip: ip address of the HTP1
  • channels: list of channels to apply filters to (sub1, sub2 and sub3 are the standard subwoofer channels in the HTP1)
  • autoclear: if set to true, BEQ filters will be reset on power state or input change

JRiver Media Center

Media Network must be enabled

  jriver:
    address: 192.168.1.181:52199
    auth:
      user: foo
      pass: thisismypass
    secure: true  
    channels:
    - SW
    - C9
    - C10
    block: 2
  • address: the ip and port on which the Media Center media network is listening
  • auth is optional, leave this out if MCWS is not secured
  • secure is optional, leave this out if SSL is not used
  • supported channels are L R C SW SL SR RL RR and C9 upto C32 (if more than 8 channel output is used)
  • block is 1 or 2 and refers to the dsp slots Parametric Equalizer and Parametric Equalizer 2 respectively

This information is not validated, it is left to the user to configure the output format on the zone to match the supplied configuration.

Q-Sys

Q-Sys Designer is supported via the QRC protocol

  qsys:
    ip: 192.168.1.181
    port: 1710
    timeout_secs: 2
    components: 
    - beq
    content_info:
    - beq_movie_info:
        text.1: title
        text.2: genres
        text.3: audio_types
        text.4: mv_adjust
        text.5: overview
        text.6: images[0]
        text.7: images[1]
    type: qsys

Configuration of the audio pipeline in Q-Sys Designer is left as an exercise for the user.

2 alternative implementations are possible.

One uses a IIR Custom Filter component which must be connected to component which provides a text field.

This can be implemented using either a Text Controller or a Custom Control.

This component allows for a mapping of a text field control key to a CatalogueEntry field name.

Two fields have special treatment:

  • filters: will be set in a format that can be linked to a IIR Custom Filter and feeds it with the required biquad coefficients.
  • images: there can be a variable number of images so each individual image can be specified in a separate field

The alternative approache uses a Parametric Equaliser component which should be configured with:

  • at least 10 bands
  • q factor

The component name should be supplied in the configuration above.

Note that this format does not support variable Q shelf filters.

CamillaDSP

CamillaDSP is supported via its websocket api which means CamillaDSP must be started with additional options:

  • -p to specify the port
  • -a to specify the listen address (required if ezbeq runs on a different host to camilladsp)
  camilla:
    ip: 192.168.1.181
    port: 1710
    timeout_secs: 2
    channels: 
    - 4
    - 7
    type: camilladsp
  • ip: the ip on which camilladsp is listening
  • port: the port on which camilladsp is listening
  • channels: a list of channel numbers to which BEQ filters will be appended

On load, the camilladsp configuration will be updated as follows:

  • each filter will be added to the Filters section in IIR format using one of the Peaking, HighShelf or LowShelf filter types. Filter names will be BEQ1 to BEQ10
  • each filter will be appended to the Pipeline for the specified channel, an entry of type Filter will be added if not already present for that channel

On unload, the camilladsp configuration will be updated as follows:

  • the filters will deleted from the Filters section
  • the filters will be removed from the Pipeline section

User controlled master volume adjustments are supported using the Volume filter if that filter has been configured in the pipeline.

BEQ specific input gain adjustments are supported via the use of a Gain filter which is inserted into the pipeline ahead of the BEQ filters themselves.

Starting ezbeq on bootup

This is optional but recommended, it ensures the app starts automatically whenever the rpi boots up and makes sure it restarts automatically if it ever crashes.

We will achieve this by creating and enabling a systemd service.

  1. Create a file ezbeq.service in the appropriate location for your distro (e.g. /etc/systemd/system/ for debian)::
[Unit]
Description=ezbeq
After=network.target

[Service]
Type=simple
User=pi
WorkingDirectory=/home/pi
ExecStart=/home/pi/python/ezbeq/bin/ezbeq
Restart=always
RestartSec=1

[Install]
WantedBy=multi-user.target
  1. enable the service and start it up::
$ sudo systemctl enable ezbeq.service
$ sudo service ezbeq start
$ sudo journalctl -u ezbeq.service
-- Logs begin at Sat 2019-08-17 12:17:02 BST, end at Sun 2019-08-18 21:58:43 BST. --
Aug 18 21:58:36 swoop systemd[1]: Started ezbeq.
  1. reboot and repeat step 2 to verify the recorder has automatically started

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ezbeq-2.1.3.tar.gz (516.9 kB view details)

Uploaded Source

Built Distribution

ezbeq-2.1.3-py3-none-any.whl (527.1 kB view details)

Uploaded Python 3

File details

Details for the file ezbeq-2.1.3.tar.gz.

File metadata

  • Download URL: ezbeq-2.1.3.tar.gz
  • Upload date:
  • Size: 516.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ezbeq-2.1.3.tar.gz
Algorithm Hash digest
SHA256 cd247dfcc7434b75817870985bdf3ffe5fa3a8b7771d259c95b52518a0416737
MD5 295110142c213157dd12cdecb0d474d4
BLAKE2b-256 4209ef0f751712e30fd54d01d6a17ed09cbe2e87e651b9f5f8aaa98e1323b9d3

See more details on using hashes here.

File details

Details for the file ezbeq-2.1.3-py3-none-any.whl.

File metadata

  • Download URL: ezbeq-2.1.3-py3-none-any.whl
  • Upload date:
  • Size: 527.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ezbeq-2.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 43fdc7eae3883b1149d9ca2795a87e280f80a91ce4643e58f7956fcf5d6ad473
MD5 0497b96a8aca993f53ae412e561810b8
BLAKE2b-256 88a03865f21ad22c154a0fa4b4416e6e210cdb13ebfe562f202f8b7954c7972f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page