data science made easy
Project description
![](resources/markovx_banner.png)
### Intro ###
[Markov Chains](https://en.wikipedia.org/wiki/Markov_chain) implementation <br>
### Installation ###
in your terminal:
> pip install markovx
### Examples ###
Adding Chains
```python
from markovx.models import MarkovModel
mx = MarkovModel()
mx.add_one('123456')
mx.add_one('qwerty')
mx.add_many(['admin', 'root', 'user'])
```
Generating Chains
```python
mx.generate(6) # len of tokens in chain
```
```python
mx.generate(6, random_init=True)
# when True first token in chain would be assigned randomly
# when False first token would be assigned based on observed firs tokens
# default to False
```
```python
mx.generate(6, smart_ending=True)
# when False chain wouldn't be terminated before len(chain) == n even if model got to an end token
# when True if model got to an end token while len(chain) < n chain would terminate
# default to False
```
Ordinal Markov Chains (position dependent chains)
```python
from markovx.models import OrdinalMarkovModel
mx = OrdinalMarkovModel()
mx.add_one('123456')
mx.add_one('123qwe')
mx.add_many(['qwerty', 'qwe123', 'qwe123456'])
mx.generate(6)
```
### Contact ###
[Tal Peretz](https://www.linkedin.com/in/tal-per/)
### Intro ###
[Markov Chains](https://en.wikipedia.org/wiki/Markov_chain) implementation <br>
### Installation ###
in your terminal:
> pip install markovx
### Examples ###
Adding Chains
```python
from markovx.models import MarkovModel
mx = MarkovModel()
mx.add_one('123456')
mx.add_one('qwerty')
mx.add_many(['admin', 'root', 'user'])
```
Generating Chains
```python
mx.generate(6) # len of tokens in chain
```
```python
mx.generate(6, random_init=True)
# when True first token in chain would be assigned randomly
# when False first token would be assigned based on observed firs tokens
# default to False
```
```python
mx.generate(6, smart_ending=True)
# when False chain wouldn't be terminated before len(chain) == n even if model got to an end token
# when True if model got to an end token while len(chain) < n chain would terminate
# default to False
```
Ordinal Markov Chains (position dependent chains)
```python
from markovx.models import OrdinalMarkovModel
mx = OrdinalMarkovModel()
mx.add_one('123456')
mx.add_one('123qwe')
mx.add_many(['qwerty', 'qwe123', 'qwe123456'])
mx.generate(6)
```
### Contact ###
[Tal Peretz](https://www.linkedin.com/in/tal-per/)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ezds-1.0.0.tar.gz
(21.1 kB
view details)
File details
Details for the file ezds-1.0.0.tar.gz
.
File metadata
- Download URL: ezds-1.0.0.tar.gz
- Upload date:
- Size: 21.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1475d05c46802acde6c8453fcee34fb7707575c9ea1495f46b2c0867f051adbd |
|
MD5 | b2e469f48c01811847a95574cf8ecc67 |
|
BLAKE2b-256 | 8b2278f66da2001e3a21adaf3a0ae54a5e07bd73a376956375d4b82a5a80577c |