Easy digital signal processing
Project description
ezDSP: Easy Digital Signal Processing
ezDSP is a digital signal processing toolbox written in PyTorch (./src/ezdsp/nn/
). However, ezDSP not only processes torch.tensors (CPU & GPU) but also handles numpy.ndarray and pd.DataFrame, enabling a consistent and intensive workflow.
Installation
$ pip install ezdsp
$ python ./example.py # ./example_outputs/ will be generated.
Samples
Normalization, Resampling, Noise Addition, Filtering, Hilbert Transformation
Wavelet Transformation
Power Spectrum Density
Phase-Amplitude Coupling
fixme
Quick Start
import ezdsp as ed
# Parameters
SRC_FS = 1024 # Source sampling frequency
TGT_FS = 512 # Target sampling frequency
FREQS_HZ = [10, 30, 100] # Frequencies in Hz
LOW_HZ = 20 # Low frequency for bandpass filter
HIGH_HZ = 50 # High frequency for bandpass filter
SIGMA = 10 # Sigma for Gaussian filter
SIG_TYPES = [
"uniform",
"gauss",
"periodic",
"chirp",
"ripple",
"meg",
"tensorpac",
] # Available signal types
# Demo Signal
xx, tt, fs = ed.demo_sig(
t_sec=T_SEC, fs=SRC_FS, freqs_hz=FREQS_HZ, sig_type="chirp"
)
# xx is either of torch.tensor (on cpu / cuda), numpy.ndarray, or pd.DataFrame.
# Normalization
xx_norm = ed.norm.z(xx)
xx_minmax = ed.norm.minmax(xx)
# Resampling
xx_resampled = ed.resample(xx, fs, TGT_FS)
# Noise addition
xx_gauss = ed.add_noise.gauss(xx)
xx_white = ed.add_noise.white(xx)
xx_pink = ed.add_noise.pink(xx)
xx_brown = ed.add_noise.brown(xx)
# Filtering
xx_filted_bandpass = ed.filt.bandpass(xx, fs, low_hz=LOW_HZ, high_hz=HIGH_HZ)
xx_filted_bandstop = ed.filt.bandstop(xx, fs, low_hz=LOW_HZ, high_hz=HIGH_HZ)
xx_filted_gauss = ed.filt.gauss(xx, sigma=SIGMA)
# Hilbert Transformation
phase, amplitude = ed.hilbert(xx) # or envelope
# Wavelet Transformation
wavelet_coef, wavelet_freqs = ed.wavelet(xx, fs)
# Power Spetrum Density
psd, psd_freqs = ed.psd(xx, fs)
# Phase-Amplitude Coupling
pac, freqs_pha, freqs_amp = ed.pac(x_3d, fs) # This function is computationally demanding. Please monitor the RAM/VRAM usage.
Alias
mngs.dsp
has the same functionalities.
Contact
Yusuke Watanabe (ywata1989@gmail.com).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ezdsp-1.3.2.tar.gz
(24.2 kB
view details)
Built Distribution
ezdsp-1.3.2-py3-none-any.whl
(32.2 kB
view details)
File details
Details for the file ezdsp-1.3.2.tar.gz
.
File metadata
- Download URL: ezdsp-1.3.2.tar.gz
- Upload date:
- Size: 24.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ba6d8a95b5a02f8379fffb664f3f7521fee5f29b491bf45871b6172c32dcef5 |
|
MD5 | 273e4e19a0d768e952e515170ed5f95f |
|
BLAKE2b-256 | 6fed840efc763cf64f105ccfc39d781580a660df80f9306995a9fa8f0d12b661 |
File details
Details for the file ezdsp-1.3.2-py3-none-any.whl
.
File metadata
- Download URL: ezdsp-1.3.2-py3-none-any.whl
- Upload date:
- Size: 32.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfc83ba9e8593321a975b90035ab2e78551b9443a3a08d3bf11b1e064fd51b72 |
|
MD5 | 5657a3c8a6aa3cfa467b17f3ac3529d5 |
|
BLAKE2b-256 | 6ffef397733a34e2834b91bbf4c915d3c6f1161bb11332139952d82cab32d9e7 |