Skip to main content

Easy to use normalization tool for machine learning.

Project description

eznorm

下の方に日本語の説明があります

Overview

  • Easy to use normalization tool for machine learning.
  • Normalization is performed on test data as well as on training parameters to prevent leakage.
  • Automatically prevents division by zero for features with a standard deviation of zero

Usage

import eznorm

train_x = [
	[1, -10, 0.3],
	[2, -5, 0.1],
	[1, -10, 0.5],
]
test_x = [[2, -5, 0.2], [1, -7, 0.3]]

# Normalize training data
norm_params = eznorm.fit(train_x)	# Fit the data to the normalization parameters (returns normalization parameters) [eznorm]
norm_train_x = eznorm.normalize(train_x, norm_params)	# Normalize the data [eznorm]
"""
norm_train_x:
[[-0.70710678 -0.70710678  0.        ]
 [ 1.41421356  1.41421356 -1.22474487]
 [-0.70710678 -0.70710678  1.22474487]]
"""

# Normalize test data
norm_test_x = eznorm.normalize(test_x, norm_params)	# Normalize the data [eznorm]
"""
norm_test_x:
[[ 1.41421356  1.41421356 -0.61237244]
 [-0.70710678  0.56568542  0.        ]]
"""

概要

  • 機械学習の正規化処理を簡単に実施するツール
  • テストデータに対してもにも学習時のパラメータで正規化を実施することでリーケージを防止
  • 標準偏差が0の特徴量に対してのゼロ割りを自動的に防止

使用例

import eznorm

train_x = [
	[1, -10, 0.3],
	[2, -5, 0.1],
	[1, -10, 0.5],
]
test_x = [[2, -5, 0.2], [1, -7, 0.3]]

# 学習データの正規化
norm_params = eznorm.fit(train_x)	# 学習データへの適合 (正規化パラメータを返す) [eznorm]
norm_train_x = eznorm.normalize(train_x, norm_params)	# データの正規化 [eznorm]
"""
norm_train_x:
[[-0.70710678 -0.70710678  0.        ]
 [ 1.41421356  1.41421356 -1.22474487]
 [-0.70710678 -0.70710678  1.22474487]]
"""

# テストデータの正規化
norm_test_x = eznorm.normalize(test_x, norm_params)	# データの正規化 [eznorm]
"""
norm_test_x:
[[ 1.41421356  1.41421356 -0.61237244]
 [-0.70710678  0.56568542  0.        ]]
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eznorm-0.0.0.tar.gz (3.0 kB view details)

Uploaded Source

Built Distribution

eznorm-0.0.0-py3-none-any.whl (3.3 kB view details)

Uploaded Python 3

File details

Details for the file eznorm-0.0.0.tar.gz.

File metadata

  • Download URL: eznorm-0.0.0.tar.gz
  • Upload date:
  • Size: 3.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for eznorm-0.0.0.tar.gz
Algorithm Hash digest
SHA256 89a803083af8873cea5fd134af58b6f1bcf92f397bd5beaae5995d40541fbce8
MD5 a9117e731cf1d527c14f0d9c9db4391b
BLAKE2b-256 0ed0aa4411d6f9994a3c8958251558f0879c4d77c049a8b783526567fec2b317

See more details on using hashes here.

File details

Details for the file eznorm-0.0.0-py3-none-any.whl.

File metadata

  • Download URL: eznorm-0.0.0-py3-none-any.whl
  • Upload date:
  • Size: 3.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for eznorm-0.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 02b47978f7b28f5de11640c7c278ae16bc079e6b7a7b577c1652fb4e6509a0a1
MD5 2f4c45f9364ad636d78cf2b235d574f7
BLAKE2b-256 8b18a707e95de07db5dbf92f4ef46a7122596abb0e2940f006f9b9396faecbe1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page