Easy to use normalization tool for machine learning.
Project description
eznorm
下の方に日本語の説明があります
Overview
- Easy to use normalization tool for machine learning.
- Normalization is performed on test data as well as on training parameters to prevent leakage.
- Automatically prevents division by zero for features with a standard deviation of zero
Usage
import eznorm
train_x = [
[1, -10, 0.3],
[2, -5, 0.1],
[1, -10, 0.5],
]
test_x = [[2, -5, 0.2], [1, -7, 0.3]]
# Normalize training data
norm_params = eznorm.fit(train_x) # Fit the data to the normalization parameters (returns normalization parameters) [eznorm]
norm_train_x = eznorm.normalize(train_x, norm_params) # Normalize the data [eznorm]
"""
norm_train_x:
[[-0.70710678 -0.70710678 0. ]
[ 1.41421356 1.41421356 -1.22474487]
[-0.70710678 -0.70710678 1.22474487]]
"""
# Normalize test data
norm_test_x = eznorm.normalize(test_x, norm_params) # Normalize the data [eznorm]
"""
norm_test_x:
[[ 1.41421356 1.41421356 -0.61237244]
[-0.70710678 0.56568542 0. ]]
"""
概要
- 機械学習の正規化処理を簡単に実施するツール
- テストデータに対してもにも学習時のパラメータで正規化を実施することでリーケージを防止
- 標準偏差が0の特徴量に対してのゼロ割りを自動的に防止
使用例
import eznorm
train_x = [
[1, -10, 0.3],
[2, -5, 0.1],
[1, -10, 0.5],
]
test_x = [[2, -5, 0.2], [1, -7, 0.3]]
# 学習データの正規化
norm_params = eznorm.fit(train_x) # 学習データへの適合 (正規化パラメータを返す) [eznorm]
norm_train_x = eznorm.normalize(train_x, norm_params) # データの正規化 [eznorm]
"""
norm_train_x:
[[-0.70710678 -0.70710678 0. ]
[ 1.41421356 1.41421356 -1.22474487]
[-0.70710678 -0.70710678 1.22474487]]
"""
# テストデータの正規化
norm_test_x = eznorm.normalize(test_x, norm_params) # データの正規化 [eznorm]
"""
norm_test_x:
[[ 1.41421356 1.41421356 -0.61237244]
[-0.70710678 0.56568542 0. ]]
"""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
eznorm-0.0.0.tar.gz
(3.0 kB
view hashes)
Built Distribution
eznorm-0.0.0-py3-none-any.whl
(3.3 kB
view hashes)