Skip to main content

A small package for convenient predictions on fine-tuned huggingface-models

Project description

This package is meant to offer a variety of convenient inference functions, particularly for fine-tuned transformers.

Limited to Jochen Hartmann's fine-tuned j-hartmann/emotion-english-distilroberta-base for now.

Install:
  1. Command line pip install ezpredict
  2. Google Colab !pip install ezpredict
Imports:
pip install numpy
pip install torch
pip install transformers
How to use:
from ezpredict import predict

preds = predict.predict_input(model_name="j-hartmann/emotion-english-distilroberta-base",
                             input=["What a beautiful day!"],
                              return_values=True,
                              print_values=True)
Variables:
  1. model_name -> name of model to perform inference on (limited to Jochen Hartmann's fine-tuned j-hartmann/emotion-english-distilroberta-base for now)
  2. input -> list of strings to perform predictions on
  3. return_values -> True/False, True: returns predictions as list of tuples
  4. print_values -> True/False, True: returns verbose outputs
Sample output:
[('What a beautiful day!', {'anger': 0.0013013791, 'disgust': 0.00047031444, 'fear': 0.001256481, 'joy': 0.95772415, 'neutral': 0.005870249, 'sadness': 0.004233605, 'surprise': 0.029143812}), ('My grandfather died today.', {'anger': 0.0012322478, 'disgust': 0.002399753, 'fear': 0.0018630251, 'joy': 0.0021994421, 'neutral': 0.012114782, 'sadness': 0.96717805, 'surprise': 0.013012686})]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ezpredict-0.0.6.tar.gz (3.7 kB view details)

Uploaded Source

Built Distribution

ezpredict-0.0.6-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file ezpredict-0.0.6.tar.gz.

File metadata

  • Download URL: ezpredict-0.0.6.tar.gz
  • Upload date:
  • Size: 3.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.2

File hashes

Hashes for ezpredict-0.0.6.tar.gz
Algorithm Hash digest
SHA256 7fdacd2acd7fc064f15f2ceb31a5ea68e277eb3f8be7bea20da438d39bf62de7
MD5 8e702ddc22db341233d3f355daee7f00
BLAKE2b-256 4836c9270eb29f45911ab0578862a4c162479d46ab4779b60d2d4bbd492ef6a8

See more details on using hashes here.

File details

Details for the file ezpredict-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: ezpredict-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 4.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.2

File hashes

Hashes for ezpredict-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 a1681efeb706fc020aa0fece5e92a194fc5a125d4ea14b5e4358175912039de9
MD5 30a85ceb4cba6db37367e37aec3f1bb6
BLAKE2b-256 edc16449f78065b17d2aec9ec97caf875b4e6d8b889d0d2279fbc7a7854c1823

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page