A small package for convenient predictions on fine-tuned huggingface-models
Project description
This package is meant to offer a variety of convenient inference functions, particularly for fine-tuned transformers. Limited to j-hartmann's fine-tuned emotion-english-distilroberta-base -> https://huggingface.co/j-hartmann/emotion-english-distilroberta-base for now.
Installs: pip install numpy pip install torch pip install transformers
How to use:
from ezpredict import predict
preds = predict.predict_input(model_name="j-hartmann/emotion-english-distilroberta-base", input=["What a beautiful day!"], return_values=True, print_values=True)
Where: model_name -> name of model to perform inference on (limited to "j-hartmann/emotion-english-distilroberta-base" for now) input -> list of strings to perform predictions on return_values -> True/False, True: returns predictions as list of tuples print_values -> True/False, True: returns verbose outputs
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ezpredict-0.0.5.tar.gz
.
File metadata
- Download URL: ezpredict-0.0.5.tar.gz
- Upload date:
- Size: 3.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d88e96757f2c03ed664d83ad5e405ef46e5e2de66b3bf5bf5a55ffe205031fb5 |
|
MD5 | 8881d1ae221d32e3d5998a2b2604f977 |
|
BLAKE2b-256 | 9a9497fe9748553540cac112060299884f1e4b90debb5b7aac0a3c162fe0eadb |
File details
Details for the file ezpredict-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: ezpredict-0.0.5-py3-none-any.whl
- Upload date:
- Size: 3.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e692caf26c1a8cfa0fef55f57777d3f15a342b50a2d87149bd92d0aab47a523c |
|
MD5 | 7135f40c7e47ea04e566be101ffcda51 |
|
BLAKE2b-256 | cab21b7ec147570da23526f8e124792abe134be8735ef447a9328011e1903b94 |