f3dasm - Framework for Data-driven development and Analysis of Structures and Materials
Project description
f3dasm
Framework for data-driven design & analysis of structures and materials
Docs | Installation | GitHub | PyPI | Practical sessions
Summary
Welcome to f3dasm
, a Python package for data-driven design and analysis of structures and materials.
Authorship
- Current created and developer: M.P. van der Schelling (M.P.vanderSchelling@tudelft.nl)
The Bessa research group at TU Delft is small... At the moment, we have limited availability to help future users/developers adapting the code to new problems, but we will do our best to help!
Getting started
The best way to get started is to follow the installation instructions.
Referencing
If you use or edit our work, please cite at least one of the appropriate references:
[1] Bessa, M. A., Bostanabad, R., Liu, Z., Hu, A., Apley, D. W., Brinson, C., Chen, W., & Liu, W. K. (2017). A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Computer Methods in Applied Mechanics and Engineering, 320, 633-667.
[2] Bessa, M. A., & Pellegrino, S. (2018). Design of ultra-thin shell structures in the stochastic post-buckling range using Bayesian machine learning and optimization. International Journal of Solids and Structures, 139, 174-188.
[3] Bessa, M. A., Glowacki, P., & Houlder, M. (2019). Bayesian machine learning in metamaterial design: fragile becomes super-compressible. Advanced Materials, 31(48), 1904845.
[4] Mojtaba, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., & Bessa, M. A. (2019). Deep learning predicts path-dependent plasticity. Proceedings of the National Academy of Sciences, 116(52), 26414-26420.
Community Support
If you find any issues, bugs or problems with this template, please use the GitHub issue tracker to report them.
License
Copyright 2023, Martin van der Schelling
All rights reserved.
This project is licensed under the BSD 3-Clause License. See LICENSE for the full license text.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file f3dasm-1.4.1.tar.gz
.
File metadata
- Download URL: f3dasm-1.4.1.tar.gz
- Upload date:
- Size: 53.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87a905e945e2c6997491d3648f3bd7a1836f77b8f5042b775bae4ddd46950db1 |
|
MD5 | ea921e222ad5a43cddb421de0b4fb23b |
|
BLAKE2b-256 | 85119bc35ef1c5d88a3477ac7a2876fb49fd734d2c5fb9c324e063802053ba2d |
File details
Details for the file f3dasm-1.4.1-py3-none-any.whl
.
File metadata
- Download URL: f3dasm-1.4.1-py3-none-any.whl
- Upload date:
- Size: 69.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 57b54a56d2997ef7935fc52acfc8a4693f0f532559196ef45beab81a6e9ad762 |
|
MD5 | e250393c0355c41ad3347c24fef07b3b |
|
BLAKE2b-256 | db80c9308932a11d0d991ccd62bdd28e8f84d6778e82c8fb380d9d4bd78d39ff |