Skip to main content

Unstructured set of the helper functions.

Project description

Facemask detection

It could be confusing, but the model in this library perform classifications of the images. It takes image as an input and outputs probability of person in the image wearing a mask.

Hence in order to get expected results the model should be combined with face detector, for example from https://github.com/ternaus/retinaface.

Example on how to combine face detector with mask detector

https://habrastorage.org/webt/b_/ja/ww/b_jawwxndpkdl2pjlxlcxvars6m.png

Installation

pip install -U facemask_detection

Use

import albumentations as A
import torch
from facemask_detection.pre_trained_models import get_model

model = get_model("tf_efficientnet_b0_ns_2020-07-29")
model.eval()

transform = A.Compose([A.SmallestMaxSize(max_size=256, p=1),
                       A.CenterCrop(height=224, width=224, p=1),
                       A.Normalize(p=1)])

image = <numpy array with the shape (height, width, 3)>

transformed_image = transform(image=image)['image']

input = torch.from_numpy(np.transpose(transformed_image, (2, 0, 1))).unsqueeze(0)

print("Probability of the mask on the face = ", model(input)[0].item())
  • Jupyter notebook with the example: Open In Colab
  • Jupyter notebook with the example on how to combine face detector with mask detector: Open In Colab

Train set

Train dataset was composed from the data:

No mask:

Mask:

Trainining

Define config, similar to facemask_detection_configs/2020-07-29.yaml.

Run

python facemask_detection/train.py -c <config>

Inference

python -m torch.distributed.launch --nproc_per_node=1 facemask_detection/inference.py -h
usage: inference.py [-h] -i INPUT_PATH -c CONFIG_PATH -o OUTPUT_PATH
                    [-b BATCH_SIZE] [-j NUM_WORKERS] -w WEIGHT_PATH
                    [--world_size WORLD_SIZE] [--local_rank LOCAL_RANK]
                    [--fp16]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_PATH, --input_path INPUT_PATH
                        Path with images.
  -c CONFIG_PATH, --config_path CONFIG_PATH
                        Path to config.
  -o OUTPUT_PATH, --output_path OUTPUT_PATH
                        Path to save jsons.
  -b BATCH_SIZE, --batch_size BATCH_SIZE
                        batch_size
  -j NUM_WORKERS, --num_workers NUM_WORKERS
                        num_workers
  -w WEIGHT_PATH, --weight_path WEIGHT_PATH
                        Path to weights.
  --world_size WORLD_SIZE
                        number of nodes for distributed training
  --local_rank LOCAL_RANK
                        node rank for distributed training
  --fp16                Use fp6

Example:

python -m torch.distributed.launch --nproc_per_node=<num_gpu> facemask_detection/inference.py \
                                   -i <input_path> \
                                   -w <path to weights> \
                                   -o <path to the output_csv> \
                                   -c <path to config>
                                   -b <batch size>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

facemask_detection-0.0.4.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

facemask_detection-0.0.4-py2.py3-none-any.whl (9.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file facemask_detection-0.0.4.tar.gz.

File metadata

  • Download URL: facemask_detection-0.0.4.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.3

File hashes

Hashes for facemask_detection-0.0.4.tar.gz
Algorithm Hash digest
SHA256 20419911bbe440683028e18c9c34a324751d160c287632ca745708f02816b55f
MD5 147e08b2916ee3de280a8d10381de013
BLAKE2b-256 dfe4dd070ae10232c907bd6321e176b0e1b0966a868e1a73ab434ec556e8c9de

See more details on using hashes here.

File details

Details for the file facemask_detection-0.0.4-py2.py3-none-any.whl.

File metadata

  • Download URL: facemask_detection-0.0.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.3

File hashes

Hashes for facemask_detection-0.0.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0a41cde2ffcfc1e2eedd1a0bad954d686e315181d61c93d4140f25b701a4dd5d
MD5 b3e7fd0fdb01722454d68f3c337c386e
BLAKE2b-256 6d8cfabe04a674984346aeb83991b5a46890615dece60a2c7ec7d453ca22a2cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page